作业帮 > 数学 > 作业

设向量OA=(1,-2),向量OB=(a,-1),向量OC=(-b,0),a>0,b>0,O为坐标原点,若A,B,C三点

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 23:58:04
设向量OA=(1,-2),向量OB=(a,-1),向量OC=(-b,0),a>0,b>0,O为坐标原点,若A,B,C三点共线,则a+2b
最小值是多少
设向量OA=(1,-2),向量OB=(a,-1),向量OC=(-b,0),a>0,b>0,O为坐标原点,若A,B,C三点
向量AB=向量OB-向量OA=(1,a-1)
向量AC=向量OC-向量OA=(2,-b-1)
三点共线,所以有2:1=(-b-1):(a-1)
2(a-1)=-b-1
2a+b=1
即a+(b/2)=1/2
所以1/a+2/b当1/a=2/b即a=b/2时取最小值,此时a=b/2=1/4
1/a+2/b>=4+4=8
最小值为8
再问: 问题是a+2b的最小值
再答: a+2b≥2√2√ab=2√2√(1/4乘以1/2)=1 即最小值为1