双曲线c1:x2/a2+y2/b2=1(a>b>0)的左准线为l,左焦点和右焦点分别为F1、F2,抛物线C2的准线l,焦
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 15:19:40
双曲线c1:x2/a2+y2/b2=1(a>b>0)的左准线为l,左焦点和右焦点分别为F1、F2,抛物线C2的准线l,焦点为F2,C1与C2l的一个交点为M,则lF1F2l/lMF1l-lMF1l/lMF2l等于?
解,设双曲线的离心率为e,点M坐标为(x0,y0),
则点M在双曲线的右支上,x0>0,
由条件知l的方程为:x=-a^2/c,|F1F2|=2c,
点M到l的距离d=x0+a^2/c,
由双曲线的焦半径公式有:
|MF1|=ex0+a,|MF2|=ex0-a,
又,M为双曲线与抛物线的交点,
∴|MF2|=d,
即ex0-a=x0+a^2/c,
解得x0=(a^2(a+c))/(c(c-a)),
∴|MF1|=(c/a)×((a^2(a+c))/(c(c-a)))+a=(2ac)/(c-a),
|MF2|=(c/a)×((a^2(a+c))/(c(c-a)))-a=(2a^2)/(c-a),
∴|F1F2|/|MF1|-|MF1|/|MF2|=(2c)/((2ac)/(c-a))-((2ac)/(c-a))/((2a^2)/(c-a))
=(c-a)/a-c/a=-1.
则点M在双曲线的右支上,x0>0,
由条件知l的方程为:x=-a^2/c,|F1F2|=2c,
点M到l的距离d=x0+a^2/c,
由双曲线的焦半径公式有:
|MF1|=ex0+a,|MF2|=ex0-a,
又,M为双曲线与抛物线的交点,
∴|MF2|=d,
即ex0-a=x0+a^2/c,
解得x0=(a^2(a+c))/(c(c-a)),
∴|MF1|=(c/a)×((a^2(a+c))/(c(c-a)))+a=(2ac)/(c-a),
|MF2|=(c/a)×((a^2(a+c))/(c(c-a)))-a=(2a^2)/(c-a),
∴|F1F2|/|MF1|-|MF1|/|MF2|=(2c)/((2ac)/(c-a))-((2ac)/(c-a))/((2a^2)/(c-a))
=(c-a)/a-c/a=-1.
双曲线c1:x2/a2+y2/b2=1(a>b>0)的左准线为l,左焦点和右焦点分别为F1、F2,抛物线C2的准线l,焦
椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左准线为l,左右焦点分别为F1、F2,抛物线C2以F2为焦点,l为
椭圆C1x²/4+y²/3=1的左准线是l,左右焦点分别为点F1,F2,抛物线C2的准线也是l
双曲线X2/a2-Y2/b2=1(a>0,b>0)右支上存在焦点F2和左准线等距离的点.求离心率的范围.
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的左顶点和右焦点分别为A,F,右准线为直线m,圆D:x2+y2-6y
椭圆x^2/4+y^2/3=1的左准线为l,左右两焦点分别为f1,f2,抛物线的准线为l,焦点为F2,椭圆和抛物线焦点为
设椭圆x2/a2+y2/b2=1(a>b>0)的左,右焦点分别为F1,F2.点p(a,b)满足|PF1|=|F1F2|
椭圆C:x2/a2+y2/b2=1(a>b>0)的左,右焦点分别为F1(-1,0),F2(1,0 )
已知F1,F2分别是双曲线C:X2/a2-Y2/b2=1(a>0,b>0)的左,右焦点,
已知双曲线C1:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,抛物线C2:y2=2px(p>0)
双曲线x2 a2 -y2 b2 =1(a>0,b>0)的左、右焦点分别为F1、F
已知椭圆c:x2/a2+y2/b2=1(a大于b大于0)的两个焦点分别为f1,f2,斜率为k的直线l过左焦点f1且于椭圆