图一:抛物线y=ax²+bx+c与x轴交于AB两点,与y轴交于点C.A(-1.0)C(0.-2)∠ACB=90
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 23:17:53
图一:抛物线y=ax²+bx+c与x轴交于AB两点,与y轴交于点C.A(-1.0)C(0.-2)∠ACB=90°(1)若直线BC交抛物线的对称轴于E,F是线段OC上的一个动点(不与0.C重合).过点F作FG||BC交x轴于G.连接EF,EG.设CF的长为m,△EFG的面积为S.求S与m的函数关系式.说明S是否存在最大值,请求出最大值,并求出此时点F的坐标.
抛物线y=ax²+bx+c与x轴交于AB两点,与y轴交于点C.A(-1.0)C(0.-2)∠ACB=90°(1)若直线BC交抛物线的对称轴于E,F是线段OC上的一个动点(不与0.C重合).过点F作FG||BC交x轴于G.连接EF,EG.设CF的长为m,△EFG的面积为S.求S与m的函数关系式.说明S是否存在最大值,请求出最大值,并求出此时点F的坐标.
解析:∵抛物线y=ax²+bx+c (a>0), 与x轴交于AB两点,与y轴交于点C
A(-1.0), C(0,-2), ∠ACB=90°
a-b-2=0==>a=b+2
AC方程:2x+y+2=0
BC方程:x-2y-4=0
∴B(4,0)
16a+4b-2=0
16b+32+4b-2=0==>b=-3/2==>a=1/2
∴y=1/2x^2-3/2x-2, 其对称轴为x=3/2
∵CF=m, ∴F(0,-2+m)
E(3/2,-5/4)
FG方程:y=1/2x+(m-2)==>G(2(2-m),0)
∴FG=√5(2-m)
∠BAC=∠BCO
tan∠BAC=2==>sin∠BAC=2/√5
∴FG与BC距离为2m/√5
∴S=1/2*√5(2-m)* 2m/√5=-m^2+2m=-(m-1)^2+1
∴当m=1时,S取最大值1,此时F(0,-1)
解析:∵抛物线y=ax²+bx+c (a>0), 与x轴交于AB两点,与y轴交于点C
A(-1.0), C(0,-2), ∠ACB=90°
a-b-2=0==>a=b+2
AC方程:2x+y+2=0
BC方程:x-2y-4=0
∴B(4,0)
16a+4b-2=0
16b+32+4b-2=0==>b=-3/2==>a=1/2
∴y=1/2x^2-3/2x-2, 其对称轴为x=3/2
∵CF=m, ∴F(0,-2+m)
E(3/2,-5/4)
FG方程:y=1/2x+(m-2)==>G(2(2-m),0)
∴FG=√5(2-m)
∠BAC=∠BCO
tan∠BAC=2==>sin∠BAC=2/√5
∴FG与BC距离为2m/√5
∴S=1/2*√5(2-m)* 2m/√5=-m^2+2m=-(m-1)^2+1
∴当m=1时,S取最大值1,此时F(0,-1)
图一:抛物线y=ax²+bx+c与x轴交于AB两点,与y轴交于点C.A(-1.0)C(0.-2)∠ACB=90
如图,抛物线y=ax²+bx-3与x轴交于A,B两点,与y轴交于点C,且经过点(2,-3a),对称轴是直线x=
如图,已知抛物线y=ax平方+bx-2(a不等0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(
1.已知抛物线y=ax²+bx+c经过点(4,-6)、(-2,0),a>0,与x轴交于A、B两点,与y轴交于点
如图,经过点M(-1,2)、N(1,-2)的抛物线Y=aX的平方+bX+C与X轴交于AB两点,与Y轴交于C点.求b的值
如图+抛物线所示y=ax²+bx-4与x轴交于点A(4,0),B(-2,0)两点,与y轴交于点C,点P是线段A
如图,已知抛物线y=1/2x²+bx+c与x轴交于A(-4,0)和b(1,0)两点与y轴交于C点
如图,已知抛物线y=ax^2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,
已知抛物线y=ax²+bx+c(a不等于0)的对称轴x=-1,与x轴交于AB两点与y轴交于C点,其中A(-3,
已知抛物线y=ax^2+bx+c的对称轴为x=2,且与x轴交于A,B两点,与y轴交于点C,其中A(1,0)C(0,-3)
在平面直角坐标系xOy中,抛物线y=ax 2 +bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的
抛物线y=ax^2+bx+c与x轴相交于A、B两点,与y轴交于C点.△ABC为直角三角形.