设f(x)与g(x)可导,f^2(x)+g^2 (x)≠0,求证函数y=根号下f^2(x)+g^2 (x)可导
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 17:16:33
设f(x)与g(x)可导,f^2(x)+g^2 (x)≠0,求证函数y=根号下f^2(x)+g^2 (x)可导
△x=h
△y/△x=[√(f^2(x+h)+g^2 (x+h))-√(f^2(x)+g^2 (x))]/h
分子有理化
△y/△x=[(f^2(x+h)+g^2 (x+h))-(f^2(x)+g^2 (x))]
/[h(√(f^2(x+h)+g^2 (x+h))+√(f^2(x)+g^2 (x)))] (分子有理化)
=[(f^2(x+h) -f^2(x))+(g^2 (x+h)- g^2 (x))]
/[h(√(f^2(x+h)+g^2 (x+h))+√(f^2(x)+g^2 (x)))](集项)
=[(f(x+h) -f (x))( f(x+h) +f (x))/ h +(g (x+h)- g (x)) (g (x+h)+ g (x))/h]*
1/[ (√(f^2(x+h)+g^2 (x+h))+√(f^2(x)+g^2 (x))](平方差分解因式)
f(x)可导,f’(x)存在,
且f(x)连续,故当h→0时,f(x+h)→f (x)
于是当h→0时,
(f(x+h) -f (x))( f(x+h) +f (x))/ h→2f’(x)f(x)
同理当h→0时,
(g (x+h)-g (x))(g (x+h)+g (x))/h→2g’(x)g(x)
同理当h→0时,
1/[ (√(f^2(x+h)+g^2 (x+h))+√(f^2(x)+g^2 (x))] →1/[2√(f^2(x)+g^2 (x))]
(有意义,因为f^2(x)+g^2 (x)≠0)
从而
(△x→0)lim(△y/△x)=[ f’(x)f(x) +g’(x)g(x)]/ √(f^2(x)+g^2 (x))
△y/△x=[√(f^2(x+h)+g^2 (x+h))-√(f^2(x)+g^2 (x))]/h
分子有理化
△y/△x=[(f^2(x+h)+g^2 (x+h))-(f^2(x)+g^2 (x))]
/[h(√(f^2(x+h)+g^2 (x+h))+√(f^2(x)+g^2 (x)))] (分子有理化)
=[(f^2(x+h) -f^2(x))+(g^2 (x+h)- g^2 (x))]
/[h(√(f^2(x+h)+g^2 (x+h))+√(f^2(x)+g^2 (x)))](集项)
=[(f(x+h) -f (x))( f(x+h) +f (x))/ h +(g (x+h)- g (x)) (g (x+h)+ g (x))/h]*
1/[ (√(f^2(x+h)+g^2 (x+h))+√(f^2(x)+g^2 (x))](平方差分解因式)
f(x)可导,f’(x)存在,
且f(x)连续,故当h→0时,f(x+h)→f (x)
于是当h→0时,
(f(x+h) -f (x))( f(x+h) +f (x))/ h→2f’(x)f(x)
同理当h→0时,
(g (x+h)-g (x))(g (x+h)+g (x))/h→2g’(x)g(x)
同理当h→0时,
1/[ (√(f^2(x+h)+g^2 (x+h))+√(f^2(x)+g^2 (x))] →1/[2√(f^2(x)+g^2 (x))]
(有意义,因为f^2(x)+g^2 (x)≠0)
从而
(△x→0)lim(△y/△x)=[ f’(x)f(x) +g’(x)g(x)]/ √(f^2(x)+g^2 (x))
设f(x)与g(x)可导,f^2(x)+g^2 (x)≠0,求证函数y=根号下f^2(x)+g^2 (x)可导
复合函数求导:设f(x)可导,g(x)=根号下{1+[sinf(x)]^2},g(x)求导
设f(x)=g[xg^2(x)],其中g(x)可导,计算f'(x).
设f(x),g(x)可导,求下列函数的导数1)y=根号下1+f²(x)+g²(x) 2)y=e的f&
高数3题目一道设函数f(x)可导,且f'(x)≠0,函数x=φ(y) 是y=f(x)的反函数,且f(2)=3,g(x)=
已知f(x)与g(x)可导,且f(x)^2+g(x)^2不等于0,求y=[f(x)^2+g(x)^2]^(1/2)的导数
知函数f(x)=x^2-1与函数g(x)=Inx.设F(x)=f(x)-2g(x)求函数F(x)极值
设f(x),g(x)是恒大于0的可导函数,且f'(x)g(x)-f(x)g'(x)小于0.
设f(x),g(x)是定义域为R的恒大于0的可导函数,且f'(x)g(x)-f(x)g'(x)
已知函数f(x)=x/根号下(x+1),g(x)=根号下(x^2-1)/x^2,设F(x)=f(x)乘以g(x),则F(
已知函数f(x)=x-lnx,g(x)=lnx/x,求证f(x)>g(x)+1/2
已知二次函数的y=g(x)导函数的图像与直线y=2x平行,且y=g(x)在x=-1处取m-1(m#0)设f(X)=g(x