若存在实常数K和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足f(x)≥kx+b和g(x)≤kx+b,则
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 12:53:45
若存在实常数K和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足f(x)≥kx+b和g(x)≤kx+b,则程直线L:y=kx+b为f(x)和g(x)的隔离直线.已知h(x)=x方,φ(x)=2eLnx(其中e为自然对数的底数)
(1)求F(x)=h(x)-φ(x)的极值;
(2)函数h(x)和φ(x)是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由
(1)求F(x)=h(x)-φ(x)的极值;
(2)函数h(x)和φ(x)是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由
1)
求导数:
F'(x)=h'(x)-φ'(x)=2x-2e/x使F'(x)=0,则x=√e;
求二阶导:F''(x)=2+2e/x^2
则F''(√e)=2+2e/√e^2=4>0,呈凹性,是极小值;
∴F(x)=h(x)-φ(x)的极小值是F(√e)=e-e=0;
2)
F'(√e)=h'(√e)-φ'(√e)=0,
则h'(√e)=φ'(√e)=2√e;这说明在x=√e时h(x)与φ(x)相切;切线斜率就是2√e;
此切线就是隔离直线.h(√e)=φ(√e)=e,则切点就是(√e,e)
∴隔离直线就是y=2√ex-e
求导数:
F'(x)=h'(x)-φ'(x)=2x-2e/x使F'(x)=0,则x=√e;
求二阶导:F''(x)=2+2e/x^2
则F''(√e)=2+2e/√e^2=4>0,呈凹性,是极小值;
∴F(x)=h(x)-φ(x)的极小值是F(√e)=e-e=0;
2)
F'(√e)=h'(√e)-φ'(√e)=0,
则h'(√e)=φ'(√e)=2√e;这说明在x=√e时h(x)与φ(x)相切;切线斜率就是2√e;
此切线就是隔离直线.h(√e)=φ(√e)=e,则切点就是(√e,e)
∴隔离直线就是y=2√ex-e
若存在实常数K和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足f(x)≥kx+b和g(x)≤kx+b,则
若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)>=kx+b和g(x)
对于具有相同定义域D的函数f(x)和g(x),若存在函数h(x)=kx+b(k,b为常数),对任给的正数m,存在相应的x
一道函数的选择题对于具有相同定义域D的函数f(x)和g(x),若存在函数h(x)=kx+b(k,b为常数),对任给的正数
设f(x)在[a,b]上可积,则对任意ε>0,存在分段常数函数p(x)和q(x)使得对任意x∈[a,b]有p(x)≤f(
对于在【a,b】上有意义的两个函数f(x)和g(x),若对任意x∈【a,b】,都有|f(x)-g(x)|≤1成立,则称f
已知函数f(x)=根号下ax^2+bx存在正数b使得f(x)的定义域和值域相同 1)求非零实数a的值 2)若函数g(x)
已知定义域为R的函数y=f(x)和y=g(x),他们分别满足条件:对任意a,b E R,都有f(a+b)=f(a)+f(
1.设函数f(x)=lgx^2和g(x)=2lg(-x)的定义域分别为A,B,则A,B满足____
已知函数f(x)=根号下ax^2+bx,存在正数b,使得f(x)的定义域和值域相同 1)求非零实数a的值 2)若函数g(
设函数f(x)和g(x)在区间[a,b]上的导数满足f'(x)>g'(x),则在(a,b)上一定有
已知f(x)=x2,g(x)=lnx,直线l:y=kx+b(常数k、b∈R)使得函数y=f(x)的图象在直线l的上方,同