作业帮 > 数学 > 作业

证明向量组线性相关已知,A:a1,a2,a3,B:b1,b2,b3.b1=a1-3a2-a3.b2=2a1+a2.b3=

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:24:27
证明向量组线性相关
已知,A:a1,a2,a3,B:b1,b2,b3.b1=a1-3a2-a3.b2=2a1+a2.b3=a1+4a2+a3.证明:向量组B必线性相关
证明向量组线性相关已知,A:a1,a2,a3,B:b1,b2,b3.b1=a1-3a2-a3.b2=2a1+a2.b3=
方法一:b1-b2+b3=0,所以向量组B线性相关
方法二:矩阵B=(b1,b2,b3)=(a1,a2,a3)C=AC,其中C=
1 2 1
-3 1 4
-1 0 1
|C|=0,所以秩(B)≤秩(C)<3,所以向量组B线性相关