已知二次函数f(x)=ax2+bx,f(x-1)为偶函数,集合A={x|f(x)=x}为单元素集合.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 22:11:20
已知二次函数f(x)=ax2+bx,f(x-1)为偶函数,集合A={x|f(x)=x}为单元素集合.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)=[f(x)-m]•ex,若函数g(x)在x∈[-3,2]上单调,求实数m的取值范围.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)=[f(x)-m]•ex,若函数g(x)在x∈[-3,2]上单调,求实数m的取值范围.
(Ⅰ)∵二次函数f(x)=ax2+bx,f(x-1)为偶函数,
∴f(x)的对称轴为x=-1,∴−
b
2a=−1
∵集合A={x|f(x)=x}为单元素集合
∴f(x)=x有两个相等的实数根
∴ax2+(b-1)x=0,∴b=1
∴
b=1
−
b
2a=−1
∴
b=1
a=
1
2
∴f(x)的解析式为f(x)=
1
2x2+x;
(Ⅱ)g(x)=(
1
2x2+x-m)•ex,
若函数g(x)在x∈[-3,2]上单调递增,则g′(x)≥0在x∈[-3,2]上恒成立
即(
1
2x2+2x+1-m)•ex≥0对x∈[-3,2]上恒成立
∴m≤(
1
2x2+2x+1)min(x∈[-3,2])
∴m≤-1
若函数g(x)在x∈[-3,2]上单调递减,则g′(x)≤0在x∈[-3,2]上恒成立
即(
1
2x2+2x+1-m)•ex≤0对x∈[-3,2]上恒成立
∴m≥(
1
2x2+2x+1)max(x∈[-3,2])
∴m≥7
∴实数m的取值范围为(-∞,-1]∪[7,+∞).
∴f(x)的对称轴为x=-1,∴−
b
2a=−1
∵集合A={x|f(x)=x}为单元素集合
∴f(x)=x有两个相等的实数根
∴ax2+(b-1)x=0,∴b=1
∴
b=1
−
b
2a=−1
∴
b=1
a=
1
2
∴f(x)的解析式为f(x)=
1
2x2+x;
(Ⅱ)g(x)=(
1
2x2+x-m)•ex,
若函数g(x)在x∈[-3,2]上单调递增,则g′(x)≥0在x∈[-3,2]上恒成立
即(
1
2x2+2x+1-m)•ex≥0对x∈[-3,2]上恒成立
∴m≤(
1
2x2+2x+1)min(x∈[-3,2])
∴m≤-1
若函数g(x)在x∈[-3,2]上单调递减,则g′(x)≤0在x∈[-3,2]上恒成立
即(
1
2x2+2x+1-m)•ex≤0对x∈[-3,2]上恒成立
∴m≥(
1
2x2+2x+1)max(x∈[-3,2])
∴m≥7
∴实数m的取值范围为(-∞,-1]∪[7,+∞).
已知二次函数f(x)=ax2+bx,f(x-1)为偶函数,集合A={x|f(x)=x}为单元素集合.
已知二次函数f(x)=ax2+bx+c(a∈Z)为偶函数,对于任意x∈R,f(x)≤1恒成立,且f(1)=0,则f(x)
设二次函数f(x)=ax2+bx+c在区间[-2,2]上的最大值、最小值分别为M、m,集合A={x|f(x)=x}.
二次函数f(x)=ax2+bx(a≠0),满足f(x+1)为偶函数,且方程f(x)=x有相等实根.
已知二次函数f(x)=ax^2+bx(a≠0),且f(x+1)为偶函数,定义:满足f(x)=x的实数x成为函数f(x)的
(已知二次函数f(x)=ax2+bx+c.)
已知二次函数f(x)=ax2+bx,f(x+1)为偶函数,函数f(x)的图像与直线y=x相切. 求f(x)的解析式
已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件f(1+x)=f(1-x),且方程f(x)=x有等根
已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x+1)=f(1-x)且方程f(x)=x有等根
已知二次函数 f(x)=ax^+bx(a不等于零),且f(x+1)为偶函数,定义:满足f(x)=x的实数x
已知函数f(x)=ax2+bx(ab为常数)x∈[-1,1] (1)若函数为偶函数且f(1)=1求ab
已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,F(x)=f(x),(x>0)或-f(x),(x0)或-f(