作业帮 > 数学 > 作业

“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的(  )

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 11:17:34
“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的(  )
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的(  )
当a=0时,f(x)=|x|,在区间(0,+∞)内单调递增.
当a<0时,f(x)=(−ax+1)x=−a(x−
1
a)x,
结合二次函数图象可知函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增.
若a>0,则函数f(x)=|(ax-1)x|,其图象如图

它在区间(0,+∞)内有增有减,
从而若函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增则a≤0.
∴a≤0是”函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的充要条件.
故选:C.