作业帮 > 数学 > 作业

急死了在△ABC中asinA+csinC-根号2asinC=bsinB,求B

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:21:27
急死了在△ABC中asinA+csinC-根号2asinC=bsinB,求B
函数f(x)=x*3+3ax*2+(3-6a)x-12a-4证明:
1:f(x)在x=0切点过(2,0):
2:若f(x)在x=x0处取最小值,x0属于(1,3),求a的取值范围
再帮我一道题
急死了在△ABC中asinA+csinC-根号2asinC=bsinB,求B
根据正弦定理,设a/sinA=b/sinB=c/sinC=k
则sinA=a/k sinB=b/K sinC=c/k
代入已知条件 asinA+csinC-根号2asinC=bsinB
得 a^2+c^2-√2ac=b^2
由余弦定理 a^2+c^2-2accosB=b^2
故cosB=√2/2
B=45°
再问: 函数f(x)=x*3+3ax*2+(3-6a)x-12a-4证明: 1:f(x)在x=0切点过(2,0): 2:若f(x)在x=x0处取最小值,x0属于(1,3),求a的取值范围 帮帮忙 再帮我一道题 好吗
再答: 1. f'(x)=3x^2+6ax+3-6a f'(0)=3-6a f(0)=-12a-4 切线方程为y+12a+4=(3-6a)x 当y=0时,x=4(a+3)/3(1-2a)≠2 是否题抄错? 2. 若f(x)在x=x0处取最小值,x0属于(1,3), 则可设f'(x)=3x^2+6ax+3-6a=3(x0-1)(x0-3)=3x0^2-12x0+9 比较可知6a=-12 a=-2