设F(X0)是关于X的M次多项式,Fn(X)=Fn-1‘(X),n∈N+,Fk(X)为非零常数,则k的值为
设F(X0)是关于X的M次多项式,Fn(X)=Fn-1‘(X),n∈N+,Fk(X)为非零常数,则k的值为
若f(x)是关于x的10次多项式函数,且fn(x)=f'n-1(x)若fk(x)=0,则k=()
设f(x)=–2x+2,记f1(x)=f(x),fn(x)=f[fn-1(x)],n≥2,n∈N,则函数y=fn(x)的
泰勒公式展开式 在0点的展开式不就是 f(x)=f(x0)+f'(x0)(x-x0)+...Fn(x0)/n!(x-x0
设 f(x)=sinx,f1(x)=f'(X),f2(X)=f1'(X).fn+1(X)=fn'(X) n属于N+ 求f
已知函数fn(x)=(1+1/n)x(n属于N)的导函数为f`n(x) (1)比较fn`(0)与1/n的大小
设f1(x)=2/(1+x),定义f(n+1)(x)=f1[fn(x)],an=[fn(0)-1]/[fn(0)+2]
若一系列函数{fn(x)}满足f1(x)=cosx,fn+1=f'n(x),
{an}是等差数列,设fn(x)=a1x a2x^2 ...anx^n,n是正偶数,且已知fn(1)=n^2,fn(-1
已知函数f1(x)=(2x-1)/(x+1) 对于n∈N* 定义fn+1(x)=f1( fn(x)) 求fn(x)解析式
(2007•上海模拟)设数列{an}是首项为0的递增数列,(n∈N),fn(x)=|sin1n(x−an)|,x∈[an
高数微分方程问题已知fn(n是下角标)满足f'n(x)+x^(n-1)*e^x,n为正整数且fn(1)=e/n,