作业帮 > 综合 > 作业

(2014•浙江模拟)对于函数f(x)和g(x),设α∈{x∈R|f(x)=0},β∈{x∈R|g(x)=0},若存在α

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/11 13:05:30
(2014•浙江模拟)对于函数f(x)和g(x),设α∈{x∈R|f(x)=0},β∈{x∈R|g(x)=0},若存在α、β,使得|α-β|≤1,则称f(x)与g(x)互为“零点关联函数”.若函数f(x)=ex-1+x-2与g(x)=x2-ax-a+3互为“零点关联函数”,则实数a的取值范围为(  )

A.[
7
3
,3]
(2014•浙江模拟)对于函数f(x)和g(x),设α∈{x∈R|f(x)=0},β∈{x∈R|g(x)=0},若存在α
函数f(x)=ex-1+x-2的零点为x=1.
设g(x)=x2-ax-a+3的零点为β,
若函数f(x)=ex-1+x-2与g(x)=x2-ax-a+3互为“零点关联函数”,
根据零点关联函数,则|1-β|≤1,
∴0≤β≤2,如图.
由于g(x)=x2-ax-a+3必过点A(-1,4),
故要使其零点在区间[0,2]上,则
g(0)×g(2)≤0或

g(0)>0
g(2)>0
△≥0
0≤
a
2≤2,
解得2≤a≤3,
故选C.