作业帮 > 数学 > 作业

数学等差数列求和难题求和:1+(1/1+2)+(1/1+2+3)+······+(1/1+2+3+·····+n)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 17:01:08
数学等差数列求和难题
求和:1+(1/1+2)+(1/1+2+3)+······+(1/1+2+3+·····+n)
数学等差数列求和难题求和:1+(1/1+2)+(1/1+2+3)+······+(1/1+2+3+·····+n)
你求的是1+1/(1+2)+1/(1+2+3)+······+1/(1+2+3+·····+n)吧
1+2+3+·····+n=n(n+1)/2
1/(1+2+3+·····+n)=2/[n(n+1)]=2[1/n-1/(n+1)]
所以:
1+1/(1+2)+1/(1+2+3)+······+1/(1+2+3+·····+n)
=2(1/1-1/2)+2(1/2-1/3)+2(1/3-1/4)+……+2[1/n-1/(n+1)]
=2[1/1-1/(n+1)]
=2n/(n+1)