数学等差数列求和难题求和:1+(1/1+2)+(1/1+2+3)+······+(1/1+2+3+·····+n)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 17:01:08
数学等差数列求和难题
求和:1+(1/1+2)+(1/1+2+3)+······+(1/1+2+3+·····+n)
求和:1+(1/1+2)+(1/1+2+3)+······+(1/1+2+3+·····+n)
你求的是1+1/(1+2)+1/(1+2+3)+······+1/(1+2+3+·····+n)吧
1+2+3+·····+n=n(n+1)/2
1/(1+2+3+·····+n)=2/[n(n+1)]=2[1/n-1/(n+1)]
所以:
1+1/(1+2)+1/(1+2+3)+······+1/(1+2+3+·····+n)
=2(1/1-1/2)+2(1/2-1/3)+2(1/3-1/4)+……+2[1/n-1/(n+1)]
=2[1/1-1/(n+1)]
=2n/(n+1)
1+2+3+·····+n=n(n+1)/2
1/(1+2+3+·····+n)=2/[n(n+1)]=2[1/n-1/(n+1)]
所以:
1+1/(1+2)+1/(1+2+3)+······+1/(1+2+3+·····+n)
=2(1/1-1/2)+2(1/2-1/3)+2(1/3-1/4)+……+2[1/n-1/(n+1)]
=2[1/1-1/(n+1)]
=2n/(n+1)
数学等差数列求和难题求和:1+(1/1+2)+(1/1+2+3)+······+(1/1+2+3+·····+n)
级数1/(n^2·(n+1)^2)求和
数列求和 用分组求和及并项法求和 Sn=1^2-2^2+3^2-4^2+…+(-1)^(n-1)·n^2
是求和的,求和的,Sn=1/1·4 + 1/4·7 +...+1/(3n-2)(3n+1)
1/n(n+2)求和,求通项求和公式
数列求和问题 用分组求和 Sn=1+(3+4)+(5+6+7)+···+(2n-1+2n+···+3n-2)
求和:1²-2²+3²-4²…+(-1)^(n-1)·n²
已知an=﹙2n-1)·3的n-1次方 求和 错位相减法
求和:(a-1)+(a方-2)+···+(a的n次方-n)
求和1/1·3+1/3·5+1/5·7+...+1/(2n+1)(2n-1)
求和:1/1x4+1/4x7+···+1/(3n-2)x(3n+1)
求和:Sn=1平方-2平方+3平方-4平方+...+(-1)n-1次方·n平方