作业帮 > 数学 > 作业

【高分100分】求解几个高等数学题目答案(题目见补充说明)之二

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 18:59:12
【高分100分】求解几个高等数学题目答案(题目见补充说明)之二
需带步骤:
1、在抛物线y=x^2上求一点P,使它到直线y=x-2的距离最短.
2、将二重积分I=∫[0到1]dy∫[y到1]e^(-x)dx交换积分次序,并计算积分值.
3、计算二重积分∫[-1到1]dx∫[0到(1-x^2)^(1/2)(即根号下1-x的平方)]【e^(-y)*sinx+(x^2+y^2)^(1/2)】dy
【高分100分】求解几个高等数学题目答案(题目见补充说明)之二
1.因为抛物线y=x^2与直线y=x-2不相交,故距离最短点处(x0,y0)斜率应该等于直线斜率1,故2*x0=1,所以x0=1/2,y0=1/4,即所求点为(1/2,1/4)
2.I=∫[0到1]dx∫[0到x]e^(-x)dy=1-2/e
3.原式=I1+I2,其中
I1=∫[-1到1]dx∫[0到(1-x^2)^(1/2)]【e^(-y)*sinx】dy
I2=∫[-1到1]dx∫[0到(1-x^2)^(1/2)【(x^2+y^2)^(1/2)】dy
由于积分区域(x轴以上的单位圆域)关于y轴对称,被积函数关于x为奇函数,故I1=0
对积分I2实行极坐标变换,很容易得I2==∫[0到π]dθ∫[0到1](r^2)dr=π/3,
故原式=π/3