已知F1(-根号3,0)F2(根号3,0)动点P满足|PF1|+|PF2|=4,记动点P的轨迹为曲线E,求曲线E的方程
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/18 17:35:06
已知F1(-根号3,0)F2(根号3,0)动点P满足|PF1|+|PF2|=4,记动点P的轨迹为曲线E,求曲线E的方程
曲线E的一条切线L,过F1,F2作L的垂线,垂足分别为M,N,求|F1M|*|F2N|的值
曲线E的一条切线L,与X轴,Y轴分别交于A,B两点,求|AB|的最小值,并求此时切线的斜率
第二,三题不太会
曲线E的一条切线L,过F1,F2作L的垂线,垂足分别为M,N,求|F1M|*|F2N|的值
曲线E的一条切线L,与X轴,Y轴分别交于A,B两点,求|AB|的最小值,并求此时切线的斜率
第二,三题不太会
解:(根据椭圆定义) a=2 c=√3 b=√(a²-c²)=1
E方程:x²/4+y²=1
(1)由题F1(-√3,0) F2(√3,0)
设切线L方程:y=kx+b
①若k不存在,则切线L为直线x=2或x=-2
|F1M|*|F2N|=(2+√3)*(2-√3)=1
②k存在
联立x²/4+y²=1和y=kx+b
消y得 (1/4+k²)x²+2kbx+b²-1=0
由题△=0 (2kb)²-4(1/4+k²)(b²-1)=0
得:b²=4k²+1 b=√(4k²+1)
所以y=kx+√(4k²+1) 即 kx-y+√(4k²+1)=0
根据点到直线距离公式:|F1M|=|-√3*k+√(4k²+1)|/√(k²+1)
|F2N|=|√3*k+√(4k²+1)|/√(k²+1)
|F1M|*|F2N|=[(4k²+1)-3k²]/(k²+1)=1
综上所述:|F1M|*|F2N|=1
(2)由题意,切线的k存在且不为零
由题(1)得:y=kx+√(4k²+1)
可知A(-√(4k²+1) /k,0) B(0,√(4k²+1) )
|AB|²=[-√(4k²+1) /k]²+[√(4k²+1)]²=4k²+1/k²+5>=2√(4k²*1/k²)+5=9
(根据基本不等式,当且仅当4k²=1/k²时等号成立)
所以|AB|最小值=3 由 4k²=1/k² 得:此时切线斜率为k=√2/2或 k=-√2/2
E方程:x²/4+y²=1
(1)由题F1(-√3,0) F2(√3,0)
设切线L方程:y=kx+b
①若k不存在,则切线L为直线x=2或x=-2
|F1M|*|F2N|=(2+√3)*(2-√3)=1
②k存在
联立x²/4+y²=1和y=kx+b
消y得 (1/4+k²)x²+2kbx+b²-1=0
由题△=0 (2kb)²-4(1/4+k²)(b²-1)=0
得:b²=4k²+1 b=√(4k²+1)
所以y=kx+√(4k²+1) 即 kx-y+√(4k²+1)=0
根据点到直线距离公式:|F1M|=|-√3*k+√(4k²+1)|/√(k²+1)
|F2N|=|√3*k+√(4k²+1)|/√(k²+1)
|F1M|*|F2N|=[(4k²+1)-3k²]/(k²+1)=1
综上所述:|F1M|*|F2N|=1
(2)由题意,切线的k存在且不为零
由题(1)得:y=kx+√(4k²+1)
可知A(-√(4k²+1) /k,0) B(0,√(4k²+1) )
|AB|²=[-√(4k²+1) /k]²+[√(4k²+1)]²=4k²+1/k²+5>=2√(4k²*1/k²)+5=9
(根据基本不等式,当且仅当4k²=1/k²时等号成立)
所以|AB|最小值=3 由 4k²=1/k² 得:此时切线斜率为k=√2/2或 k=-√2/2
已知F1(-根号3,0)F2(根号3,0)动点P满足|PF1|+|PF2|=4,记动点P的轨迹为E.(1)求E的方程.(
已知F1(-根号3,0)F2(根号3,0)动点P满足|PF1|+|PF2|=4,记动点P的轨迹为曲线E.如果过点Q(0,
已知两定点F1(-根号2,0)F2(根号2,0),满足条件|PF2|-|PF1|=2的点P的轨迹方程是曲线E
已知两定点F1(-根号2,0),F2(根号2,0)满足条件||PF1|-|PF2||=2得点P的轨迹是曲线E,直线y=k
已知F1(-根号3,0)F2(根号3,0)动点P满足|PF1|+|PF2|=4,求向量PF1*向量PF2的最大值和最小值
已知F1(-2,0),F2(2,0)两点,曲线C上的动点P满足|PF1|+|PF2|=6.
已知F1(-2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E.求轨迹E的方程.
已知两定点F1(-√2,0)F2(√2,0),满足条件|向量PF2|-|向量PF1|=2的点P的轨迹方程是曲线E,直线y
已知F1(-根号2,0)F2(根号2,0)|PF2|-|PF1|=2的P的轨迹为E
已知两点F1(-根号2,0)、F2(根号2,0),曲线C上的动点P(x,y)满足向量PF1*PF2+向量PF1模长*向量
已知圆锥曲线C的焦点F1,F2在轴上,离心率√3/2 ,其上的动点P满足PF1+PF2=4,求曲线标准方程
已知圆锥曲线C的焦点F1,F2在轴上,离心率√3/2 ,其上的动点P满足PF1+PF2=4,求曲线c标准方程