在四棱锥P-ABCD中,已知∠DAB=∠ABC=90°,PA⊥平面ABCD,AB=BC=1,AD=2,求证CD⊥平面PA
已知四棱锥P-ABCD中∠DAB=∠ABC=90°,AB=BC=1,PA=AD=2,PA⊥平面ABCD
如图,在四棱锥P-ABCD中,∠DAB=∠ABC=90°,PA⊥平面ABCD,点E是PA的中点,AB=BC=1,AD=2
在如图所示的四棱锥P-ABCD中,已知PA⊥平面ABCD,AB//DC,角DAB=90°
四棱锥P-ABCD中,角DAB=角ABC=90度PA垂直平面ABCD,点E是PA中点AB=BC=1,AD=2求证平面PC
已知四棱锥P-ABCD中,PA垂直平面ABCD,ABCD是直角梯形,AD平行BC,∠BAD=90°,BC=2AD.求证:
在底面为直角梯形的四棱锥P-ABCD中,AD‖BC,∠ABC=90°PA⊥平面ABCD,PA=3,AD=2,AB=2√3
已知四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PA⊥平面ABCD,E为BC中点,求证:AE⊥PD.
如图所示在四棱锥P-ABCD中 PA垂直平面ABCD,AB=4,BC=3 AD=5 ∠DAB=∠ABC=90.E是CD的
四棱锥P-ABCD中PA⊥平面ABCDAB=4 BC=3 AD=5 ∠DAB=∠ABC=90°,E是CD中点.若直线PB
四棱锥P-ABCD中PA⊥平面ABCDAB=4 BC=3 AD=5 ∠DAB=∠ABC=90°求E是CD中点
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
在四棱锥P—ABCD中,PA⊥平面ABCD,AB⊥AD,AC⊥CD,角ABC为60°,PA=AB=BC,E为PC中点,求