作业帮 > 数学 > 作业

在四棱锥P-ABCD中,已知∠DAB=∠ABC=90°,PA⊥平面ABCD,AB=BC=1,AD=2,求证CD⊥平面PA

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 11:50:24
在四棱锥P-ABCD中,已知∠DAB=∠ABC=90°,PA⊥平面ABCD,AB=BC=1,AD=2,求证CD⊥平面PAC

在四棱锥P-ABCD中,已知∠DAB=∠ABC=90°,PA⊥平面ABCD,AB=BC=1,AD=2,求证CD⊥平面PA
∠DAB=∠ABC=90°→BC∥AD且AC=√2且∠BAD=45°
通过AD=2,AC=√2和∠BAD=45°,可求出CD=√2
由于AC=CD=√2,且AD=2,可求得△ACD是以∠ACD为直角的直角三角形
故DC⊥AC
PA⊥平面ABCD→PA⊥CD,也即CD⊥PA,且AC、PA在平面PAC内
根据平面外的一条线垂直于平面内的任意两条不平行直线定理,故CD⊥平面PAC