如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 03:19:23
如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.
(1)求证:①DE=DG; ②DE⊥DG;
(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);
(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想.
(1)求证:①DE=DG; ②DE⊥DG;
(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);
(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想.
(1)①证明:∵四边形ABCD是正方形,
∴AD=DC,∠GAD=∠DCE=90°,
在△GAD和△ECD中
AG=CE
∠GAD=∠ECD
AD=DC
∴△GAD≌△ECD(SAS),
∴DE=DG;
②∵四边形ABCD是正方形,
∴∠ADC=90°,
∵△GAD≌△ECD,
∴∠GDA=∠CDE,
∴∠GDE=∠GDA+∠ADE=∠CDE+∠ADE=∠ADC=90°,
∴DE⊥DG.
(2) 如图所示:;
(3)四边形CEFK是平行四边形,
证明:∵四边形ABCD是正方形,
∴∠B=∠ECD=90°,BC=CD,
在△KBC和△ECD中
BC=CD
∠B=∠ECD
KB=EC
∴△KBC≌△ECD(SAS),
∴DE=CK,∠DEC=∠BKC,
∵∠B=90°,
∴∠KCB+∠BKC=90°,
∴∠KCB+∠DEC=90°,
∴∠EOC=180°-90°=90°,
∵四边形DGFE是正方形,
∴DE=EF=CK,∠FED=90°=∠EOC,
∴CK∥EF,
∴四边形CEFK是平行四边形.
∴AD=DC,∠GAD=∠DCE=90°,
在△GAD和△ECD中
AG=CE
∠GAD=∠ECD
AD=DC
∴△GAD≌△ECD(SAS),
∴DE=DG;
②∵四边形ABCD是正方形,
∴∠ADC=90°,
∵△GAD≌△ECD,
∴∠GDA=∠CDE,
∴∠GDE=∠GDA+∠ADE=∠CDE+∠ADE=∠ADC=90°,
∴DE⊥DG.
(2) 如图所示:;
(3)四边形CEFK是平行四边形,
证明:∵四边形ABCD是正方形,
∴∠B=∠ECD=90°,BC=CD,
在△KBC和△ECD中
BC=CD
∠B=∠ECD
KB=EC
∴△KBC≌△ECD(SAS),
∴DE=CK,∠DEC=∠BKC,
∵∠B=90°,
∴∠KCB+∠BKC=90°,
∴∠KCB+∠DEC=90°,
∴∠EOC=180°-90°=90°,
∵四边形DGFE是正方形,
∴DE=EF=CK,∠FED=90°=∠EOC,
∴CK∥EF,
∴四边形CEFK是平行四边形.
如图,E、F分别为正方形ABCD的边AB、BC上的点,EF‖AC,G在DA的延长线上,且AG=AD,CE的延长线交DF于
如图四边形ABCD是边长为2的正方形,点G是BC延长线上的一点,连结AG,点E、F分别在AG上,连接BE.DF,∠1=∠
E,F分别为正方形ABCD的边AB,BC上的点,且BF=BE,G在DA的延长线上,且AG=AD,CE的延长线交DF于H,
如图正方形ABCD的边长为2,E是AB的中点,点H在BA延长线上,且EH=ED,四边形AFGH是正方形.
如图,E,F分别是正方形ABCD的边AB,BC上的点,且EF平行AC,在DA的延长线上取一点G使AG=AD,EG与DF相
已知:如图,四边形ABCD和CEFG都是正方形,点K在BC上,延长CD到点H,使DH=CE=BK.
已知,如图,在正方形ABCD中,点G是BC延长线上一点,连接AG分别交BD、CD于点E、F.CG=nCE
如图,已知四边形ABCD为平行四边形,点E在AB的延长线上,CE∥BD,且CE=CA,求证:四边形ABCD是矩形
E,F,分别是正方形ABCD的边AB,BC上的点,EF∥AC,G在AD的延长线上,且AG=AD,GE的延长线交DF于H.
如图,在平行四边形ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,
如图,已知在平行四边形ABCD中,E,F是对角线BD上的两点,BE=DF,点G,H分别在BA和DC的延长线上,且AG=C
如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接