已知数列{an}中,a1=5且an=2an-1+2n-1(n≥2且n∈N+)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 03:53:16
已知数列{an}中,a1=5且an=2an-1+2n-1(n≥2且n∈N+)
n≥2时,
an=2a(n-1)+2^n -1
等式两边同除以2^n
an/2^n =a(n-1)/2^(n-1) +1- 1/2^n
an/2^n -1/2^n=a(n-1)/2^(n-1) +1 -2/2^n=a(n-1)/2^(n-1) -1/2^(n-1) +1
(an -1)/2^n -[a(n-1) -1]/2^(n-1)=1,为定值.
(a1-1)/2=(5-1)/2=2,数列{(an -1)/2}是以2为首项,1为公差的等差数列.
(an -1)/2^n=2+n-1=n+1
an=(n+1)2^n +1
n=1时,a1=4+1=5,同样满足通项公式
数列{an}的通项公式为an=(n+1)2^n +1
Sn=a1+a2+...+an
=2×2+3×2^2+...+(n+1)×2^n +n
令Cn=2×2+3×2^2+...+(n+1)×2^n,
则2Cn=2×2^2+3×2^3+...+n×2^n+(n+1)×2^(n+1)
Cn-2Cn=-Cn=4+2^2+2^3+...+2^n -(n+1)×2^(n+1)
=1+2+2^2+...+2^n -(n+1)×2^(n+1) +1
=1×[2^(n+1) -1]/(2-1) -(n+1)×2^(n+1) +1
=-n×2^(n+1)
Cn=n×2^(n+1)
Sn=Cn +n=n×2^(n+1) +n
an=2a(n-1)+2^n -1
等式两边同除以2^n
an/2^n =a(n-1)/2^(n-1) +1- 1/2^n
an/2^n -1/2^n=a(n-1)/2^(n-1) +1 -2/2^n=a(n-1)/2^(n-1) -1/2^(n-1) +1
(an -1)/2^n -[a(n-1) -1]/2^(n-1)=1,为定值.
(a1-1)/2=(5-1)/2=2,数列{(an -1)/2}是以2为首项,1为公差的等差数列.
(an -1)/2^n=2+n-1=n+1
an=(n+1)2^n +1
n=1时,a1=4+1=5,同样满足通项公式
数列{an}的通项公式为an=(n+1)2^n +1
Sn=a1+a2+...+an
=2×2+3×2^2+...+(n+1)×2^n +n
令Cn=2×2+3×2^2+...+(n+1)×2^n,
则2Cn=2×2^2+3×2^3+...+n×2^n+(n+1)×2^(n+1)
Cn-2Cn=-Cn=4+2^2+2^3+...+2^n -(n+1)×2^(n+1)
=1+2+2^2+...+2^n -(n+1)×2^(n+1) +1
=1×[2^(n+1) -1]/(2-1) -(n+1)×2^(n+1) +1
=-n×2^(n+1)
Cn=n×2^(n+1)
Sn=Cn +n=n×2^(n+1) +n
已知数列{an}中a1=6,且an-an-1=(an-1/n)+n+1(n属于N*,n≥2),求an
已知数列{an}中,a1=1,a2=2,an+1=2an+3an-1(n≥2且n∈N*).
已知数列{An}中a1=1.且A(n+1)=6n*2^n-An.求通项公试An
已知数列{an}中,a1=-1,a2=2,且an+1+an-1=2(an +1)(n≥2,n∈N
已知数列{an}中,a1=1,an=an-1*3^n-1(n≥2且n∈N+)
在数列{an}中,a1=3,an=-an-1-2n+1(n≥2,且n属于N*) (1)证明:数列{an+n}是等比数列,
已知数列{an中}a1=3.且an+1=an+2的n次方
已知数列{an}中,a1=5,an=2an-1+2^n-1(n>=2且n∈n+) (1)证明数列{an-1/2∧n}为等
已知数列{an}中a1=-1且(n+1)an,(n+2)an+1(是下标)成等差数列,设bn=(n+1)an-n+2求证
已知数列{an}中,a1=1,a(n+1)>an,且[a(n+1)-an]^2-2[a(n+1)+an]+1=0,则an
已知数列an中,a1=2且a n+1(下标)=[n+2/n]×an,求通项公式
已知数列an中,a1=5,且an=2a(n-1)+2^n-1(n大于等于2,n属于正整数)