已知等差数列{an}的首项a1>0,公差d>0,前n项和为Sn,设m,n,p∈N*,且m+n=2p (1)求证:Sn+S
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 21:58:04
已知等差数列{an}的首项a1>0,公差d>0,前n项和为Sn,设m,n,p∈N*,且m+n=2p (1)求证:Sn+Sm≥2Sp;
(2)求证:Sn•Sm≤(Sp)2;
(3)若S1005=1,求证:∑1/Sn≥ 2009 ∑上方为2009 下方为n=1
(2)求证:Sn•Sm≤(Sp)2;
(3)若S1005=1,求证:∑1/Sn≥ 2009 ∑上方为2009 下方为n=1
(1)由等差数列前n项和公式可得Sn=d2
n2+(a1-d
2
)n,代入Sn+Sm,利用m+n=2p可证
(2)由等差数列前n项和公式可得Sn=d
2
n2+(a1-d
2
)n,代入SnSm,利用m+n=2p可证
(3)由(2)可得Sp
Sm
≥Sn
Sp
,从而有2009
n=1
1
Sn
=S1005
S1
+S1005
S2
+S1005
S2009
=S2009
S1005
+S2008
S1005
+S1
S1005
,再利用(1)的结论可证.证明:(1)由等差数列前n项和公式可得Sn=d 2 n2+(a1-d 2 )n,∴Sn+Sm=d 2 n2+(a1-d 2 )n+ d 2 m2+(a1-d 2 )m=d 2 (n2+m2)+( m+n)a1-d 2 (m+n)≥2Sp(2)SnSm=[d 2 n2+(a1-d 2 )n][d 2 m2+(a1-d 2 )m]≤d2 4 p2+d 2 (a1-d 2 )p3+(a1-d 2 )2p2,∴SnSm≤(Sp)2(3)2009 n=1 1 Sn =S1005 S1 +S1005 S2 +S1005 S2009 =S2009 S1005 +S2008 S1005 +S1 S1005 ≥2009
点评:本题主要考查等差数列的前n项和公式及不等式的基本性质,考查等价转化思想,属于中档题.
n2+(a1-d
2
)n,代入Sn+Sm,利用m+n=2p可证
(2)由等差数列前n项和公式可得Sn=d
2
n2+(a1-d
2
)n,代入SnSm,利用m+n=2p可证
(3)由(2)可得Sp
Sm
≥Sn
Sp
,从而有2009
n=1
1
Sn
=S1005
S1
+S1005
S2
+S1005
S2009
=S2009
S1005
+S2008
S1005
+S1
S1005
,再利用(1)的结论可证.证明:(1)由等差数列前n项和公式可得Sn=d 2 n2+(a1-d 2 )n,∴Sn+Sm=d 2 n2+(a1-d 2 )n+ d 2 m2+(a1-d 2 )m=d 2 (n2+m2)+( m+n)a1-d 2 (m+n)≥2Sp(2)SnSm=[d 2 n2+(a1-d 2 )n][d 2 m2+(a1-d 2 )m]≤d2 4 p2+d 2 (a1-d 2 )p3+(a1-d 2 )2p2,∴SnSm≤(Sp)2(3)2009 n=1 1 Sn =S1005 S1 +S1005 S2 +S1005 S2009 =S2009 S1005 +S2008 S1005 +S1 S1005 ≥2009
点评:本题主要考查等差数列的前n项和公式及不等式的基本性质,考查等价转化思想,属于中档题.
已知非负等差数列{an}的公差d不为0,前n项和为Sn,设m,n,p∈N*,且m+n=2p (1)求证:1/Sn+1/S
已知{(an}是等差数列,d为公差且不为0,a1和d均为实数,它的前n项和记作Sn,设集合A={〔an,Sn/n〕︱n∈
设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,Sn+2-Sn=36,则n=( )
已知数列an的首项a1=5,前n项和为Sn,且S(n+1)=2Sn+n+5(n∈N*),求数列{an}的前n项和Sn,设
设数列[an}的前n项和为Sn,a1=a ,a2=p(p>0),Sn=n(an-a1)/2
设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,
已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列
已知等差数列{an}的公差d>0,设{an}的前n项和为Sn,a1=1,S2•S3=36.
已知等差数列{an}的前n项和为Sn,且a1不等于0,求(n*an)/Sn的极限、(Sn+Sn+1)/(Sn+Sn-1)
已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1(n∈N*),等差数列{bn}中,bn>0(n∈N*)且
设Sn是等差数列{an}的前n项和,求证:若正整数m,n,p成等差数列,则Sm/m,Sn/n,Sp/p也成等差数列.
已知数列{an}的首项a1=3,前n项和为Sn,且S(n+1)=3Sn+2n(n∈N)