(2003•武汉)已知:抛物线y=ax2+bx+c(a<0)经过点(-1,0),且满足4a+2b+c>0,以下结论:①a
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 03:59:05
(2003•武汉)已知:抛物线y=ax2+bx+c(a<0)经过点(-1,0),且满足4a+2b+c>0,以下结论:①a+b>0;②a+c>0;③-a+b+c>0;④b2-2ac>5a2,其中正确的个数有( )
A. 1个
B. 2个
C. 3个
D. 4个
A. 1个
B. 2个
C. 3个
D. 4个
(1)因为抛物线y=ax2+bx+c(a<0)经过点(-1,0),
所以原式可化为a-b+c=0----①,
又因为4a+2b+c>0----②,
所以②-①得:3a+3b>0,
即a+b>0;
(2)②+①×2得,6a+3c>0,
即2a+c>0,
∴a+c>-a,
∵a<0,
∴-a>0,
故a+c>0;
(3)因为4a+2b+c>0,可以看作y=ax2+bx+c(a<0)当x=2时的值大于0,草图为:
可见c>0,
∵a-b+c=0,
∴-a+b-c=0,
两边同时加2c得-a+b-c+2c=2c,
整理得-a+b+c=2c>0,
即-a+b+c>0;
(4)∵过(-1,0),代入得a-b+c=0,
∴b2-2ac-5a2=(a+c)2-2ac-5a2=c2-4a2=(c+2a)(c-2a)
又∵4a+2b+c>0
4a+2(a+c)+c>0
即2a+c>0①
∵a<0,
∴c>0
则c-2a>0②
由①②知(c+2a)(c-2a)>0,
所以b2-2ac-5a2>0,
即b2-2ac>5a2
综上可知正确的个数有4个.
故选D.
所以原式可化为a-b+c=0----①,
又因为4a+2b+c>0----②,
所以②-①得:3a+3b>0,
即a+b>0;
(2)②+①×2得,6a+3c>0,
即2a+c>0,
∴a+c>-a,
∵a<0,
∴-a>0,
故a+c>0;
(3)因为4a+2b+c>0,可以看作y=ax2+bx+c(a<0)当x=2时的值大于0,草图为:
可见c>0,
∵a-b+c=0,
∴-a+b-c=0,
两边同时加2c得-a+b-c+2c=2c,
整理得-a+b+c=2c>0,
即-a+b+c>0;
(4)∵过(-1,0),代入得a-b+c=0,
∴b2-2ac-5a2=(a+c)2-2ac-5a2=c2-4a2=(c+2a)(c-2a)
又∵4a+2b+c>0
4a+2(a+c)+c>0
即2a+c>0①
∵a<0,
∴c>0
则c-2a>0②
由①②知(c+2a)(c-2a)>0,
所以b2-2ac-5a2>0,
即b2-2ac>5a2
综上可知正确的个数有4个.
故选D.
已知抛物线y=ax²+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0.以下结论
已知抛物线y=ax^2+bx+c(a<0)过点(-1,0)且满足4a+2b+c=0以下结论
已知抛物线y=ax2+bx+c的图象经过点(1,2),且a-b+c<0如图所示,则下列结论:
初三数学抛物线已知Y=ax^2+bx+c(a小于0)经过点(-1,0),且满足4a+2b+c大于0,以下结论正确的个数是
已知抛物线y=ax2+bx+c的对称轴为2,且经过点(3,0),则a+b+c的值( )
已知抛物线y=ax2+bx+c经过A(1,-4),B(-1、0),C(-2,5)三点.
若抛物线y=aX2+bX+C的顶点是A(2,1)且经过点B(1,0)则抛物线的函数关系式为什么
已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,-6)和原点.
已知,如图,抛物线y=ax2+bx+c经过点A(-1,0),B(0,-3),C(3,0 )三点.
如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且与x轴的另一个交
已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,-6)和原点. (1)求抛物线的函数关系式;
如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(-3,0)