求解一道大一的高数题.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 18:19:54
求解一道大一的高数题.
转证:(1+x)*[ln(1+x)] >= arctanx,
f(x) = (1+x)*[ln(1+x)] - arctanx,
f(0) = 0,
f'(x) = ln(1+x) +1 - 1/(1+x*x) = ln(1+x) +(x*x)/(1+x*x) >0,
so f(x)严格单调递增,f(x)>=f(0),so (1+x)*[ln(1+x)] - arctanx>=0,
so (1+x)*[ln(1+x)] >=arctanx,
so ln(1+x) >=arctanx/(1+x)
f(x) = (1+x)*[ln(1+x)] - arctanx,
f(0) = 0,
f'(x) = ln(1+x) +1 - 1/(1+x*x) = ln(1+x) +(x*x)/(1+x*x) >0,
so f(x)严格单调递增,f(x)>=f(0),so (1+x)*[ln(1+x)] - arctanx>=0,
so (1+x)*[ln(1+x)] >=arctanx,
so ln(1+x) >=arctanx/(1+x)