求证 log(a)^(b)=1/log(b)^(a)
求证:log底数a真数b=1/log底数b真数a
log a b*log b c=log b b*log a c成立吗
log(ab)=log(a)+ log(b)吗
利用换底公式证明:log(a)b.log(b)c.log(c)a=1
设a>b>1,log(a)b+log(b)a=10/3,则log(a)b-log(b)a=
已知a大于b大于1,log(a)b+log(b)a=10/3,求log(a)b-log(b)a的值
已知a<b<1,log(a)b+log(b)a=10/3,求log(a)b-log(b)a的值
log a b=log b a,则:ab=?
公式:log(a)(b)*log(b)(a)=?
化简log(1/a)b+log(a)b
a^[log(a)b×log(b)c×log(c)N]
证明:log(A)M=log(b)M/log(b)A (b>0且b≠1).