帮忙解三道不等式题.!急
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 13:35:37
帮忙解三道不等式题.!急
(1)已知a大于b大于c,求证(a^2)b+(b^2)c+(c^2)a大于(a^2)c+(b^2)a(c^2)b.
(2)n属于整数且大于1
1.求证lgn*lg(n+2)小于2lg(n+1)
求证log以n+1为底的n的对数小于log以n+2为底的n+1的对数.
要详解.谢
(1)已知a大于b大于c,求证(a^2)b+(b^2)c+(c^2)a大于(a^2)c+(b^2)a(c^2)b.
(2)n属于整数且大于1
1.求证lgn*lg(n+2)小于2lg(n+1)
求证log以n+1为底的n的对数小于log以n+2为底的n+1的对数.
要详解.谢
是否有笔误?
(2)lgn+lg(n+2)<2lg(n+1)
证明:左式=lg[n(n+2)]
10^lg[n(n+2)]=n(n+2)
右式=lg(n+1)^2
10^lg(n+1)^2=(n+1)^2
∵n(n+2)<(n+1)^2
∴lgn+lg(n+2)<2lg(n+1)
求证log以n+1为底的n的对数小于log以n+2为底的n+1的对数.
证明:用换底公式做!
左式=lgn/lg(n+1)
右式=lg(n+1)/lg(n+2)
两式通分后只比较分子的大小:
左式=[lgnlg(n+2)]/[lg(n+1)lg(n+2)]
右式=[lg(n+1)]^2/[lg(n+2)lg(n+1)]
(2)lgn+lg(n+2)<2lg(n+1)
证明:左式=lg[n(n+2)]
10^lg[n(n+2)]=n(n+2)
右式=lg(n+1)^2
10^lg(n+1)^2=(n+1)^2
∵n(n+2)<(n+1)^2
∴lgn+lg(n+2)<2lg(n+1)
求证log以n+1为底的n的对数小于log以n+2为底的n+1的对数.
证明:用换底公式做!
左式=lgn/lg(n+1)
右式=lg(n+1)/lg(n+2)
两式通分后只比较分子的大小:
左式=[lgnlg(n+2)]/[lg(n+1)lg(n+2)]
右式=[lg(n+1)]^2/[lg(n+2)lg(n+1)]