两道高数证明1.当△x→0时,比较无穷小△y和dy(提示:讨论导数是否为零)设f(X)在[0,1]上连续,在(0,1)上
设f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,f(x)不恒为零.证明:max|f(x)|
设f(x)在[0,1]上有连续导数,且f(x)=f(0)=0.证明
设f(x)在[0,1]上具有二阶连续导数,且|f''(x)|
设函数f(x)在[0,1]上连续,证明:∫(0->1)dx∫(0->1)dy∫(x->y)f(x)f(y)f(z)dz=
设f(x)在【0,1】上连续且∫(0,1)f(x)dx=A,证明∫(0,1)dx∫(x,1)f(x)f(y)dy=A∧2
设 f (x) 在 [0,1] 上连续 ∫f(x)dx=A积分上下限为0,1求∫dx∫f(x)f(y)dy,上下限依次为
设f(x)在区间【0,1】上有连续导数,证明x∈【0,1】,有|f(x)|≤∫(|f(t)|+|f′(t)|)dt
设f(x)在[0,1]上有连续导数,f(0)=0,0
设f(x)在[0,1]上有连续的一阶导数,且|f'(x)|≤M,f(0)=f(1)=0,证明:
设f(x)在[0,1]上有连续一阶导数,在(0,1)内二阶可导.
设f(x)在区间[a,b]上连续,且f(x)>0,证明 f(x)在[a,b]上的导数 乘 1/f(x)在[a,b]上的导
高数证明题:设函数f(x)在区间[0,1]上连续,证明