1已知sinβ=msin(2α+β),且α+β≠π/2+kπ(k∈Z)α≠π/2+kπ,(k∈Z)m≠1,求证tan(α
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 19:53:37
1已知sinβ=msin(2α+β),且α+β≠π/2+kπ(k∈Z)α≠π/2+kπ,(k∈Z)m≠1,求证tan(α+β)=(1+m)tanα/1-m
2求函数Y=7-sinxcosx+4cosx²-4cosx^4的最大值和最小值
3当x属于[π/2,π]时 求函数h(x)=3sin(π/6-x)-cos(2x-π/3)的值域
需要具体步骤和 解题思路
2求函数Y=7-sinxcosx+4cosx²-4cosx^4的最大值和最小值
3当x属于[π/2,π]时 求函数h(x)=3sin(π/6-x)-cos(2x-π/3)的值域
需要具体步骤和 解题思路
给出思路:
1.将已知条件中的β=(α+β)-α,2α+β=(α+β)+α
再展开,就可以得到目标结论了.注意两边合并同类项后同除以α+β和α的余弦
2.4cosx²-4cosx^4=4cosx²(1-sin^2α)=sin^22α
前面sinαcosα=1/2sin2α,这样就可以将sin2α看成一个t,t∈〔-1,1〕,变成二次函数在这个区间上的值域问题了,就不难了
3.将前面的π/6-x看成一个角α,则后面的cos(2x-π/3)=cos(π/3-2x)=cos2α=1-2sin^2α
下面就是传统的注意角的范围,获得sinα的范围了,再配方,这些都是常用方法
1.将已知条件中的β=(α+β)-α,2α+β=(α+β)+α
再展开,就可以得到目标结论了.注意两边合并同类项后同除以α+β和α的余弦
2.4cosx²-4cosx^4=4cosx²(1-sin^2α)=sin^22α
前面sinαcosα=1/2sin2α,这样就可以将sin2α看成一个t,t∈〔-1,1〕,变成二次函数在这个区间上的值域问题了,就不难了
3.将前面的π/6-x看成一个角α,则后面的cos(2x-π/3)=cos(π/3-2x)=cos2α=1-2sin^2α
下面就是传统的注意角的范围,获得sinα的范围了,再配方,这些都是常用方法
大家帮个忙 高一数学已知sinβ=msin(2α+β),且m≠1,α≠kп\2,α+β≠п/2+kп,(k∈Z),求证:
已知sinα=4sin(α+β),α+β≠kπ+π/2(k∈Z).求证tan(α+β)=sinβ/(cosβ-4)
3sinβ=sin(2α+β),α≠2kπ+π/2 ,α+β≠kπ+π/2 (k∈z)求证tan(α+β)=2tanα
已知α、β≠kπ+π2(k∈Z),且sinθ+cosθ=2sinα , sinθcosθ=sin
已知tanα=2 若α是第三象限角,求sin(kπ-α)+cos(kπ+α)(k∈z)的值
已知α,β≠kπ+π/2 K∈Z ,3sin(α+β)-2=0,5sin(α-β)-1=0,求tanα/tanβ的值
弧度制下的角的表示sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2
已知sinB=msin(2a+B)且m≠1,a≠k丌/2,a﹢B≠丌/2+k丌﹙k∈Z﹚求证:tan﹙a+B﹚=﹙1﹢m
若α∈(-π/2+2kπ,2kπ)(k∈Z),则sinα,cosα,tanα的大小关系是
已知α∈(2kπ+π/2,2kπ+3π/2),k∈z,且tan(3π/2-α)=1/3,分别求tan2α,sinα,si
已知sin(π-α)-cos(-α)=1/5,求tan[(2k+1)π+α]+cot[(2k+1)π-α](k属於Z)的
【1】求证sin(kπ-a)cos(kπ+a)/sin[(k+1)π+a]cos[(k+1)π+a]=-1,k∈Z