作业帮 > 数学 > 作业

如图,在△ABC中,CD是中线,AC2=BC2=4CD2求证,△ABC是直角三角形

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 17:06:13
如图,在△ABC中,CD是中线,AC2=BC2=4CD2求证,△ABC是直角三角形
速求!
如图,在△ABC中,CD是中线,AC2=BC2=4CD2求证,△ABC是直角三角形

延长CD到E使DE=CD,连接AE可用SAS证明三角形AED与三角形BCD全等,即AE=BC
∵AC^2+BC^2=4CD^2
∴AC²+AE²=(2DC)²
∴三角形AEC为直角三角形,角EAC为直角
∵∠EAD=∠CBD
∴∠CBD+∠BAC=90
∴三角形ABC为直角三角形