如图,在△ABC中,D为BC中点,M,N分别为AB,AC上的一点,∠MDN=90°.若MD²+ND²
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 18:36:20
如图,在△ABC中,D为BC中点,M,N分别为AB,AC上的一点,∠MDN=90°.若MD²+ND²=BM²+CN².证明AD²=1/4(AB²+AC²)
延长MD到K,使MD=DK,连接AD,NK,CK
∵D为BC中点,∠MDB=∠CDK
∴⊿BMD≌⊿DKC
∴∠MBD=∠DCK,BM=KC
∵∠MDN=90°,MD²+ND²=BM²+CN²=DK²+ND²=NC²+CK²
∴∠NCK=90º(勾股定理)
∴∠NCD和∠KCN互余
∵∠MBD=∠DCK
∴∠B+∠ACB=90º
∴∠BAC=90º
又∵,D为BC中点,
∴AD=1/2BC
∴AD²=1/4BC²
又∵AB²+AC²=BC²
∴AD²=1/4(AB²+AC²)
∵D为BC中点,∠MDB=∠CDK
∴⊿BMD≌⊿DKC
∴∠MBD=∠DCK,BM=KC
∵∠MDN=90°,MD²+ND²=BM²+CN²=DK²+ND²=NC²+CK²
∴∠NCK=90º(勾股定理)
∴∠NCD和∠KCN互余
∵∠MBD=∠DCK
∴∠B+∠ACB=90º
∴∠BAC=90º
又∵,D为BC中点,
∴AD=1/2BC
∴AD²=1/4BC²
又∵AB²+AC²=BC²
∴AD²=1/4(AB²+AC²)
如图,D为Rt△ABC的斜边BC的中点,M、N分别在AB、AC上,且∠MDN=90°.求证:BM²+CN
在△ABC中,D为BC中点,MD⊥ND,MD交AB于M,ND交AC于N猜想BM+CN>MN若∠A=90°,求证BM平方+
如图,△ABC中,D为BC的中点,M为AB上的一动点,N为AC上一动点,N为AC上一动点,且∠MDN=90°.(1)求证
如图,△ABC中,D为BC的中点,M为AB上的一动点,N为AC上一动点,N为AC上一动点,且∠MDN=90°.
如图,D为Rt三角形ABC的斜边BC的中点,M、N分别在AB、AC边上,且角MDN=90°求证:
如图,在△ABC中,∠ACB=90°,AC=BC,D为AB的中点,点M、N分别在AC、CB的延长线上,且MD⊥DN,连M
△ABC中 D为BC的中点 M为AB上一动点 N为AC上一动点 且角MDN=90°
如图,D为Rt△ABC的斜边BC的中点,M,N分别在AB,AC边上,且∠MDN=90°,求证:BM²+CN&s
如图,在△ABC中,∠ACB=90゜,AC=BC,D为AB的中点,点M、N分别在AC、CB的延长线上,且MD⊥DN,连M
如图在△abc中,∠acb=90°,ac=BC,d为ab中点,点m,n分别在ac延长线上.且md垂直dn,连接mn 求证
如图,D为等腰Rt△ABC的斜边BC的中点,M,N分别在AB.AC边上,角MDN=90°,求证:BM的平方+CN的平方=
如图,在ΔABC中,∠ACB=50°,AC=BC,D为AB的中点,点M、N分别在AC、CA的延长线上,且MD⊥DN,连M