已知数列{an}中,a1=2,a↓n+1=2an+3 1)求an .2)令bn=n an,求数列{bn}的前n项和sn
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 21:01:49
已知数列{an}中,a1=2,a↓n+1=2an+3 1)求an .2)令bn=n an,求数列{bn}的前n项和sn
a(n+1)=2an+3
a(n+1)+3=2an+6
a(n+1)+3=2(an+3)
[a(n+1)+3]/(an+3)=2
所以an+3是等比数列,公比为2
an+3=(a1+3)q^(n-1)
an+3=(2+3)*2^(n-1)
an=5*2^(n-1)-3
bn=n an
bn=n[5*2^(n-1)-3]
bn=5n*2^(n-1)-3n
sn=5*1*2^(1-1)-3*1+5*2*2^(2-1)-3*2+.+5n*2^(n-1)-3n
=5*[1*2^(1-1)+2*2^(2-1)+.+n*2^(n-1)]-3(1+2+3+...+n)
=5*[1*2^(1-1)+2*2^(2-1)+.+n*2^(n-1)]-3n(n+1)/2
2sn=5*[1*2^(2-1)+2*2^(3-1)+.+n*2^n]-3n(n+1)
sn-2sn=5*[2^(1-1)+2^(2-1)+.+2^(n-1)-n*2^n]-3n(n+1)/2+3n(n+1)
-sn=5*[(1-2^n)/(1-2)-n*2^n]+3n(n+1)/2
-sn=5*[2^n-1-n*2^n]+3n(n+1)/2
sn=5*[n*2^n-2^n+1]-3n(n+1)/2
sn=5*[(n-1)*2^n+1]-3n(n+1)/2
sn=5(n-1)*2^n-3n(n+1)/2+5
a(n+1)+3=2an+6
a(n+1)+3=2(an+3)
[a(n+1)+3]/(an+3)=2
所以an+3是等比数列,公比为2
an+3=(a1+3)q^(n-1)
an+3=(2+3)*2^(n-1)
an=5*2^(n-1)-3
bn=n an
bn=n[5*2^(n-1)-3]
bn=5n*2^(n-1)-3n
sn=5*1*2^(1-1)-3*1+5*2*2^(2-1)-3*2+.+5n*2^(n-1)-3n
=5*[1*2^(1-1)+2*2^(2-1)+.+n*2^(n-1)]-3(1+2+3+...+n)
=5*[1*2^(1-1)+2*2^(2-1)+.+n*2^(n-1)]-3n(n+1)/2
2sn=5*[1*2^(2-1)+2*2^(3-1)+.+n*2^n]-3n(n+1)
sn-2sn=5*[2^(1-1)+2^(2-1)+.+2^(n-1)-n*2^n]-3n(n+1)/2+3n(n+1)
-sn=5*[(1-2^n)/(1-2)-n*2^n]+3n(n+1)/2
-sn=5*[2^n-1-n*2^n]+3n(n+1)/2
sn=5*[n*2^n-2^n+1]-3n(n+1)/2
sn=5*[(n-1)*2^n+1]-3n(n+1)/2
sn=5(n-1)*2^n-3n(n+1)/2+5
已知数列an满足a1=1,a(n+3)=3an,数列bn的前n项和Sn=n2+2n+1 ⑴求数列an,bn的通项公式 ⑵
1.已知数列{an}是等差数列,a1=2,a1+a2+a3=12,令bn=3^an,求数列{bn}的前n项和Sn.
an=2*3^n-1 若数列bn满足bn=an+(-1)^n*ln(an),求数列bn前n项和Sn
高二数学-已知数列『an』中a1=2,a(n+1)=an+2n...若an+3n-2=2/bn,求数列bn的前n项和Sn
在数列an中,已知a1=2,an+1=2an/an +1,令bn=an(an -1).求证bn的前n项和
已知数列{an}前n项和Sn=n^2+n,令bn=1/anan+1,求数列{bn}的前n项和Tn
已知数列{an}是等差数列,a1=1,a1+a2+a3=12.令bn=3^an,求数列{bn}的前n项和sn.
已知数列{an}的前n项和Sn=-an-(1/2)^(n-1)+2(n为正整数).令bn=2^n*an,求证数列{bn}
数列an中a1=2 an+1=an+2n①求an的通项公式②若an+3n -2=2/bn,求数列bn的前n项和sn
已知数列(An)满足A1=1 An+1=3An 数列(Bn)前n项和Sn=n*n+2n+1
已知数列An,A1=1,An=kA(n-1)+k-2,若k=3,令bn=An+1/2,求数列bn的前n项和Sn 谢谢o(
在数列an中a1=2,a(n+1)下标=4an-3n+1 1设bn=an-n求证bn是等比数列 2求数列an的前n项和s