作业帮 > 数学 > 作业

求X趋向于0时,lim(tanX-sinX)/(sin2X)^3

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 05:39:43
求X趋向于0时,lim(tanX-sinX)/(sin2X)^3
为什么这样做不对?
当X趋向0时,tanX~X,sinX~X,所以原式等于0.
求X趋向于0时,lim(tanX-sinX)/(sin2X)^3
不对.这个是0/0的极限
(tanx-sinx)/(sin2x)^3
=(sinx/cosx-sinx)/(2sinxcosx)^3
=sinx(1-cosx)/[8(sinx)^3*(cosx)^4]
=(1-cosx)/[8(sinx)^2*(cosx)^4]
=2[sin(x/2)]^2/{8[2sin(x/2)cos(x/2)]^2*(cosx)^4}
=1/{16(cos(x/2)]^2*cosx)^4}
∴lim(x->0)(tanx-cosx)/(sin2x)^3
=1/lim(x->0){16[cos(x/2)]^2*(cosx)^4}
=1/(16*1^2*1^4)
=1/16.