如图,四边形ABCD是正方形,三角形ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 07:52:18
如图,四边形ABCD是正方形,三角形ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60度得到BM,连接EN、AM、CM.
(1)求证:三角形AMB全等于三角形ENB
(2)①当点M在何处时,AM+CM的值最小;②当点M在何处时,AM+CM+BM的值最小,并说明理由;
(3)当AM+BM+CM的最小值为根3+1时,求正方形的边长.
⑴∵△ABE是等边三角形,
∴BA=BE,∠ABE=60°.
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN.
即∠BMA=∠NBE.
又∵MB=NB,
∴△AMB≌△ENB(SAS)
⑵①当M点落在BD的中点时,AM+CM的值最小
②连接CE,当M点位于BD与CE的交点处时,
AM+BM+CM的值最小
理由如下:连接MN.由⑴知,△AMB≌△ENB,
∴AM=EN.
∵∠MBN=60°,MB=NB,
∴△BMN是等边三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM
根据“两点之间线段最短”,得EN +MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长
⑶过E点作EF⊥BC交CB的延长线于F,
∴∠EBF=90°-60°=30°.
设正方形的边长为x,则BF=√3/2x,EF=x/2
在Rt△EFC中,
∵EF²+FC²=EC²,
(x/2)²+(√3/2x+x)²=(√3+1)²
解得x=√2
∴BA=BE,∠ABE=60°.
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN.
即∠BMA=∠NBE.
又∵MB=NB,
∴△AMB≌△ENB(SAS)
⑵①当M点落在BD的中点时,AM+CM的值最小
②连接CE,当M点位于BD与CE的交点处时,
AM+BM+CM的值最小
理由如下:连接MN.由⑴知,△AMB≌△ENB,
∴AM=EN.
∵∠MBN=60°,MB=NB,
∴△BMN是等边三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM
根据“两点之间线段最短”,得EN +MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长
⑶过E点作EF⊥BC交CB的延长线于F,
∴∠EBF=90°-60°=30°.
设正方形的边长为x,则BF=√3/2x,EF=x/2
在Rt△EFC中,
∵EF²+FC²=EC²,
(x/2)²+(√3/2x+x)²=(√3+1)²
解得x=√2
帮帮咱、、、如图四边形ABCD是正方形 ABE是等边三角形,M为对角线BD上一点(不含B点) 将BM绕点逆时针旋转60°
初三几何数学在正方形ABCD中,点M是对角线BD上(不含B点)任意一点,当M在何处时AM+BM+CM的值最小,说明理由
已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点,(点P与B不重合)连结AP,将线段AP绕点A逆时针
如图,在等边三角形abc 中,d是ac 边上的一点,连接bd ,将三角形bcd 绕点b逆时针旋转6
如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕
如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP
如图,正方形ABCD的边长为4,△ABE是等边三角形,点E在正方形ABCD中,在对角线AC上存有一点P
如图,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE
如图,D是等边△ABC内的一点,AD=10,BD=8,CD=6.将△BCD绕点B逆时针旋转60°得到△ABE
等边三角形三角形ABC是等边三角形,P为三角形ABC内部一点,将三角形ABP绕点A逆时针旋转后,能与三角形ACQ重合,如
如图,D是等边三角形ABC内一点,AD=10,BD=8,CD=6.将△BCD绕点B旋转60度,得到△ABE.求△ABC面
如图,四边形ABCD是正方形,P是正方形内任意一点,连接PA、PB,将△PAB绕点B顺时针旋转至△P′CB处.