如图1,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高,抛物线y=a
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 15:08:15
如图1,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高,抛物线y=ax2+2x与直线y=
1 |
2 |
(1)设直线OA的解析式为y=kx,
则有:3k=3,k=1;
∴直线OA的解析式为y=x;
(2)当x=6时,y=
1
2x=3,
∴C(6,3);
将C(6,3)代入抛物线的解析式中,
得:36a+12=3,a=-
1
4;
即a的值为-
1
4;
(3)根据题意,D(3,0),B(6,0).
∵点P的横坐标为m,PE∥y轴交OA于点E,
∴E(m,m).
当0<m<3时,如图1,
S=S△OAB-S△OED
=
1
2×6×3−
1
2×3m=−
3
2m+9.
当m>3时,如图2,
S=S△OBE-S△ODA
=
1
2×6×m−
1
2×3×3
=3m-
9
2;
(4)m=3−
3或m=
9
4或3≤m<4.
提示:
如图3、RQ=RN时,m=3-
3;
如图4、AD所在的直线为矩形RQMN的对称轴时,m=
9
4;
如图5、RQ与AD重合时,重叠部分为等腰直角三角形,m=3;
如图6、当点R落在AB上时,m=4,所以3≤m<4.
(1)已知了A点的坐标,即可求出正比例函数直线OA的解析式;
(2)根据C点的横坐标以及直线OC的解析式,可确定C点坐标,将其代入抛物线的解析式中即可求出待定系数a的值;
(3)已知了A点的坐标,即可求出OD、AD的长,由于△OAB是等腰直角三角形,即可确定OB的长;欲求四边形ABDE的面积,需要分成两种情况考虑:
①0<m<3时,P点位于线段OD上,此时阴影部分的面积为△AOB、△ODE的面积差;
②m>3时,P点位于D点右侧,此时阴影部分的面积为△OBE、△OAD的面积差;
根据上述两种情况阴影部分的面积计算方法,可求出不同的自变量取值范围内,S、m的函数关系式;
(4)若矩形RQMN与△AOB重叠部分为轴对称图形,首先要找出其对称轴;
①由于直线OA的解析式为y=x,若设QM与OA的交点为H,那么∠QEH=45°,△QEH是等腰直角三角形;那么当四边形QRNM是正方形时,重合部分是轴对称图形,此时的对称轴为QN所在的直线;可得QR=RN,由此求出m的值;
②以QM、RN的中点所在直线为对称轴,此时AD所在直线与此对称轴重合,可得PD=
RN=
,由OP=OD-PD即可求出m的值;
③当P、D重合时,根据直线OC的解析式y=
x知:RD=
;此时R是AD的中点,由于RN∥x轴,且RN=
=
DB,所以N点恰好位于AB上,RN是△ABD的中位线,此时重合部分是等腰直角三角形REN,由于等腰直角三角形是轴对称图形,所以此种情况也符合题意,此时OP=OD=3,即m=3;
当R在AB上时,根据直线OC的解析式可用m表示出R的纵坐标,即可得到PR、PB的表达式,根据PR=PB即可求出m的值;
根据上述三种轴对称情况所得的m的值,及R在AB上时m的值,即可求得m的取值范围.
则有:3k=3,k=1;
∴直线OA的解析式为y=x;
(2)当x=6时,y=
1
2x=3,
∴C(6,3);
将C(6,3)代入抛物线的解析式中,
得:36a+12=3,a=-
1
4;
即a的值为-
1
4;
(3)根据题意,D(3,0),B(6,0).
∵点P的横坐标为m,PE∥y轴交OA于点E,
∴E(m,m).
当0<m<3时,如图1,
S=S△OAB-S△OED
=
1
2×6×3−
1
2×3m=−
3
2m+9.
当m>3时,如图2,
S=S△OBE-S△ODA
=
1
2×6×m−
1
2×3×3
=3m-
9
2;
(4)m=3−
3或m=
9
4或3≤m<4.
提示:
如图3、RQ=RN时,m=3-
3;
如图4、AD所在的直线为矩形RQMN的对称轴时,m=
9
4;
如图5、RQ与AD重合时,重叠部分为等腰直角三角形,m=3;
如图6、当点R落在AB上时,m=4,所以3≤m<4.
(1)已知了A点的坐标,即可求出正比例函数直线OA的解析式;
(2)根据C点的横坐标以及直线OC的解析式,可确定C点坐标,将其代入抛物线的解析式中即可求出待定系数a的值;
(3)已知了A点的坐标,即可求出OD、AD的长,由于△OAB是等腰直角三角形,即可确定OB的长;欲求四边形ABDE的面积,需要分成两种情况考虑:
①0<m<3时,P点位于线段OD上,此时阴影部分的面积为△AOB、△ODE的面积差;
②m>3时,P点位于D点右侧,此时阴影部分的面积为△OBE、△OAD的面积差;
根据上述两种情况阴影部分的面积计算方法,可求出不同的自变量取值范围内,S、m的函数关系式;
(4)若矩形RQMN与△AOB重叠部分为轴对称图形,首先要找出其对称轴;
①由于直线OA的解析式为y=x,若设QM与OA的交点为H,那么∠QEH=45°,△QEH是等腰直角三角形;那么当四边形QRNM是正方形时,重合部分是轴对称图形,此时的对称轴为QN所在的直线;可得QR=RN,由此求出m的值;
②以QM、RN的中点所在直线为对称轴,此时AD所在直线与此对称轴重合,可得PD=
1 |
2 |
3 |
4 |
③当P、D重合时,根据直线OC的解析式y=
1 |
2 |
3 |
2 |
3 |
2 |
1 |
2 |
当R在AB上时,根据直线OC的解析式可用m表示出R的纵坐标,即可得到PR、PB的表达式,根据PR=PB即可求出m的值;
根据上述三种轴对称情况所得的m的值,及R在AB上时m的值,即可求得m的取值范围.
如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点A,交y轴
如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点A,交y轴
如图,在平面直角坐标系中等腰直角△AOB的斜边OB在X轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点A.
如图一,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点A,交y轴
如图在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4进过
如图,在平面直角坐标系,点A的坐标为(√3,1),点B在x轴正半轴上,△AOB是以A为顶点的等腰直角三角形
如图,抛物线y=1/8(x+1)^-2定点为A,点B在抛物线上,以AB的斜边作等腰直角三角形,直角顶点C在y轴上
已知,如图,在平面直角坐标系中,RT三角形ABC的斜边BC在x轴上,直角顶点A在y
已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,直角顶点A在y轴的正半轴上,A(0,2),B(-1,0)
已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,直角顶点A在y轴的正半轴上,A(0,2),B(-1,0)
如图在平面直角坐标系中等腰直角三角形ABC放在第二象限顶点A在y轴上直角顶点C的坐标为(-1,0)不会别进
如图,在平面直角坐标系中,点a的坐标为(1,根号3),三角形aob的面积是根3.抛物线过点aob,在抛物线的对称轴上存在