作业帮 > 数学 > 作业

1,f(x)=cos(2x-π/3)+2sin^2 x (1)求最小正周期及对称轴方程,

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 11:52:36
1,f(x)=cos(2x-π/3)+2sin^2 x (1)求最小正周期及对称轴方程,
1,f(x)=cos(2x-π/3)+2sin^2 x (1)求最小正周期及对称轴方程,
f(x)=cos(2x-π/3)+2sin^2 x
=cos2xcosπ/3+sin2xsinπ/3+1-cos2x
=1/2cos2x+sin2xsinπ/3+1-cos2x
=-1/2cos2x+sin2xsin(π-2π/3)+1
=cos2π/3cos2x+sin2xsin2π/3+1
=cos(2x-2π/3)+1
所以最小正周期是π,
对称轴方程是x=π/3
再问: 我还想问下,若g(x)=(f(x))^2+f(x),那其值域怎么求?
再答: g(x)=(f(x))^2+f(x)=[cos(2x-2π/3)+1]^2+cos(2x-2π/3)+1 =[cos(2x-2π/3)]^2+3cos(2x-2π/3)+2 =[cos(2x-2π/3)+3/2]^2-1/4 因为-1≤cos(2x-2π/3)≤1 所以0≤[cos(2x-2π/3)+3/2]^2≤(1+3/2)^2=25/4 所以g(x)其值域是[-1/4,6]