已知数列an满足an+1=an+2*3的n次方+1,a1=3,求数列an的通项公式
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 12:07:35
已知数列an满足an+1=an+2*3的n次方+1,a1=3,求数列an的通项公式
我要解题思路,完整的过程我可以自己写
我要解题思路,完整的过程我可以自己写
a2=a1+2*3^1+1=10
a3=a2+2*3^2+1=29
...
所以不是等差或等比数列
a2=a1+2*3^1+1
a3=a2+2*3^2+1=a1+2*3^1+1+2*3^2+1=a1+2*(3^1+3^2)+1*2
a4=a3+2*3^3+1=a1+2*(3^1+3^2+3^3)+1*3
an+1=a1+2*(3^(n+1)-3)/2+1*n=3+(3^(n+1)-3)+n=3^(n+1)+n
an=3^n+(n-1) n>=1
3^1+3^2+3^3.等比数列和 Sn=b1(1-q^n)/(1-q)=3*(1-3^n)/(1-3)= (3^(n+1)-3)/2
a3=a2+2*3^2+1=29
...
所以不是等差或等比数列
a2=a1+2*3^1+1
a3=a2+2*3^2+1=a1+2*3^1+1+2*3^2+1=a1+2*(3^1+3^2)+1*2
a4=a3+2*3^3+1=a1+2*(3^1+3^2+3^3)+1*3
an+1=a1+2*(3^(n+1)-3)/2+1*n=3+(3^(n+1)-3)+n=3^(n+1)+n
an=3^n+(n-1) n>=1
3^1+3^2+3^3.等比数列和 Sn=b1(1-q^n)/(1-q)=3*(1-3^n)/(1-3)= (3^(n+1)-3)/2
已知数列{An}满足An+1=2(n+1)*5的n次方*An,A1=3,用累乘法求数列{An}的通项公式
已知数列{an}满足a1=1,an=(an-1)/3an-1+1,(n>=2,n属于N*),求数列{an}的通项公式
15、已知数列{an}满足an+1=3an+2,a1=2,求数列{an} 的通项公式和前n项的和
已知数列an满足an+1=an+2*3n+1,a1=3,求数列an的通项公式
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an
已知数列{An}满足An+1=2An+3*2^n,A1=2,用定义法求数列{An}的通项公式
已知数列{an}中a1=1,an+1-an=3n,求数列{an}的通项公式.
已知数列{an}满足 a1=3,an+1=an+3n²+3n+2-1\n(n+1),求an的通项公式
已知数列{an}中a1=3且an+1=an+2n.求数列的通项公式
已知数列{an}满足a1=1/2,an+1=3an+1,求数列{an}通项公式
已知数列{an},a1=1,an+1=3an/2an+3,(1)求数列{an}的前五项)(2)数列{an}的通项公式
已知数列{an}中,a1=1,an+1=3an+(3的n)次方,求数列{an}的通项公式