如图所示,△ABC是正三角形,△A1B1 C1的三条边A1B1、BlC1、C1A1交△ABC各边分别于C2、C
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 22:52:06
如图所示,△ABC是正三角形,△A1B1 C1的三条边A1B1、BlC1、C1A1交△ABC各边分别于C2、C3,A2、A3,B2、B3.已知A2C3=C2B3=B2A3,且C2C32+B2B32=A2A32.请你证明:AlB1⊥C1A1.
证明:如图,过A2作C3C2的平行线交过C2所作C3A2的平行线于点O,连接OA3、0B3,
∴A2OC2C3是平行四边形,
∴A2O∥C3C2,且A2O=C3C2,OC2∥A2C3且OC2=A2C3=B3C2,
∴△OB3C2是正三角形,
∴∠OB3C2=60°=∠B,
∴OB3∥A3B2,
又∵0B3=B3C2=A3B2,
∴OB3B2A3是平行四边形,
∴OA3∥B3B2且OA3=B3B2,
∵C2C32+B2B32=A2A32,
∴OA22+OA32=A2A32,
在△A2OA3中,
∵OA22+OA32=A2A32,
∴由勾股定理的逆定理得∠A2OA3=90°,
∵已证OA3∥B3B2,即OA3∥A1C1,A2O∥C3C2,即A2O∥B1A1,
∴∠C1A1B1=90°,
∴A1B1⊥C1A1.
∴A2OC2C3是平行四边形,
∴A2O∥C3C2,且A2O=C3C2,OC2∥A2C3且OC2=A2C3=B3C2,
∴△OB3C2是正三角形,
∴∠OB3C2=60°=∠B,
∴OB3∥A3B2,
又∵0B3=B3C2=A3B2,
∴OB3B2A3是平行四边形,
∴OA3∥B3B2且OA3=B3B2,
∵C2C32+B2B32=A2A32,
∴OA22+OA32=A2A32,
在△A2OA3中,
∵OA22+OA32=A2A32,
∴由勾股定理的逆定理得∠A2OA3=90°,
∵已证OA3∥B3B2,即OA3∥A1C1,A2O∥C3C2,即A2O∥B1A1,
∴∠C1A1B1=90°,
∴A1B1⊥C1A1.
三角形ABC是正角形,三角形A1B1C1的三条边A1B1、B1C1、C1A1交三角形ABC各边于C2C3A
18.如图,△ABC的面积为1.分别倍长AB,BC,CA得到△A1B1C1.再分别倍长A1B1,B1C1,C1A1得到△
如图,△ABC的面积为1,分别倍长AB,BC,CA得到△A1B1C1,再分别倍长A1B1,B1C1,C1A1得到△A2B
已知在△ABC和△A1B1C1中,AB=A1B1,BC=B1C1,高BD=B1D1,则角C和角C1的关系是
如图所示,A1,B1,C1分别是△ABC的三边中点 A2,B2,C2 分别是△A1B1C1的各边的中点.是第一幅图.
如图所示,A1,B1,C1分别是△ABC的三边中点 A2,B2,C2 分别是△A1B1C1的各边的中点
已知如图,AD、A1D1分别是△ABC与△A1B1C1的中线,且AB:A1B1=BC:B1C1=AD:A1D1求证△AB
如图,AD和A1D1分别是△ABC和△A1B1C1的中线,且AB/A1B1=AC/A1C1=AD/A1D1,试判断△AB
已知:如图,AD、A1D1分别是△ABC与△A1B1C1的中线,且AB/A1B1=BC/B1C1=AD/A1D1,求证;
已知:如图,AD,A1D1分别是△ABC和△A1B1C1的中线,且AB/A1B1=BC/B1C1=AD/A1D1.求证:
已知:△AD A1D1分别为锐角△ABC和△A1B1C1的边BC B1C1的中线 且AB=A1B1 AD=A1D1请你补
⊙O与△ABC的三边BC、CA、AB分别交于点A1、A2、B1、B2、C1、C2,过上述六点分别作所在边的垂线a1、a2