求由半球面z=根号(3a^2-x^2-y^2)及抛物面x^2+y^2=2az所围成的立体的全面积
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 13:18:11
求由半球面z=根号(3a^2-x^2-y^2)及抛物面x^2+y^2=2az所围成的立体的全面积
由题意知,所围成的立体在xy平面上的投影是S:x²+y²≤2a²
故 所求全面积=∫∫{√[1+(-x/√(3a²-x²-y²))²+(-y√(3a²-x²-y²))²]+√[1+(x/a)²+(y/a)²]}dxdy
=∫∫[√3a/√(3a²-x²-y²)+√(a²+x²+y²)/a]dxdy
=∫dθ∫[√3a/√(3a²-r²)+√(a²+r²)/a]rdr (应用极坐标变换)
=π∫[√3a/√(3a²-r²)+√(a²+r²)/a]d(r²)
=π[-2√3a√(3a²-r²)+(2/3)(a²+r²)^(3/2)/a]│
=π[-2√3a(a-√3a)+(2/3)(3√3a³-a³)/a]
=π(16a²/3)
=16πa²/3.
故 所求全面积=∫∫{√[1+(-x/√(3a²-x²-y²))²+(-y√(3a²-x²-y²))²]+√[1+(x/a)²+(y/a)²]}dxdy
=∫∫[√3a/√(3a²-x²-y²)+√(a²+x²+y²)/a]dxdy
=∫dθ∫[√3a/√(3a²-r²)+√(a²+r²)/a]rdr (应用极坐标变换)
=π∫[√3a/√(3a²-r²)+√(a²+r²)/a]d(r²)
=π[-2√3a√(3a²-r²)+(2/3)(a²+r²)^(3/2)/a]│
=π[-2√3a(a-√3a)+(2/3)(3√3a³-a³)/a]
=π(16a²/3)
=16πa²/3.
求由旋转抛物面x^2+y^2=az及锥面z=2a-根号(x^2+y^2)(a>0)所围成立体的体
旋转抛物面z=2-x^2-y^2与xy坐标面所围成的立体的体积
利用三重积分计算下列立体的体积 由抛物面z=2-x^2-y^2及圆锥面z=√x^2+y^2所围成
求由圆柱面x2+y2=2ax,旋转抛物面az=x2+y2及z=0所围成的立体的体积
求由曲面x^2=a^2-az,x^2+y^2=a^2,z=0(a>0)所围立体的体积
求锥面z= √x^2+y^ 2与半球面 z= √ 1-x^2-y^ 2所围成的立体的体积
用二重积分计算由抛物面z=x^2+y^2及坐标平面和平面x+y=1所围成立体的体积
求由抛物柱面z=2-x^2及椭圆抛物面z=x^2+ y^2围城的立体体积
求平面x=0,y=0,x+y=1围成的柱体被z=0及抛物面x^2+y^2=6-z所截得立体的体积.请写明过程.
求解一道微积分的题,本人初学微积分,求由平面x=4,y=4及抛物面z=x^2+y^2+1所围立体体积感觉题怪怪的,因为所
利用二重积分计算由抛物面z=10-3x∧2-3y∧2与平面z=4所围立体的体积
求平面z=c(c>0)与椭圆抛物面z=1/2(x^2/a^2+y^2/b^2)所围立体的体积