10,已知双曲线x^2/4-y^2/12=1的离心率为P,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 03:19:10
10,已知双曲线x^2/4-y^2/12=1的离心率为P,
焦点为F的抛物线y^2=2px与直线y=k(x-p/2)交于AB两点,且|AF|/|FB|=P,则K的值为?
焦点为F的抛物线y^2=2px与直线y=k(x-p/2)交于AB两点,且|AF|/|FB|=P,则K的值为?
双曲线x^2/4-y^2/12=1
a=2,c=√(a^2+b^2)=4
∴e=c/a=2
即p=2
∴抛物线y^2=2px即y^2=4x
焦点F(1,0)
直线y=k(x-p/2)即y=k(x-1)
又可化为x=ty+1 ,(t=1/k)
代入 y^2=4x得:
y^2=4(ty+1)
即y^2-4ty-4=0
设A(x1,y1),B(x2,y2)
∴y1+y2=4t①
,y1y2=-4 ②
①²/②:
y1/y2+y2/y1+2=-4t^2
∵|AF|/|FB|=P
∴|y1|/|y2|=2
∵y1y2
a=2,c=√(a^2+b^2)=4
∴e=c/a=2
即p=2
∴抛物线y^2=2px即y^2=4x
焦点F(1,0)
直线y=k(x-p/2)即y=k(x-1)
又可化为x=ty+1 ,(t=1/k)
代入 y^2=4x得:
y^2=4(ty+1)
即y^2-4ty-4=0
设A(x1,y1),B(x2,y2)
∴y1+y2=4t①
,y1y2=-4 ②
①²/②:
y1/y2+y2/y1+2=-4t^2
∵|AF|/|FB|=P
∴|y1|/|y2|=2
∵y1y2
双曲线x^2÷a^2-y^2÷b^2=1的左右焦点为F1和F2,点P在双曲线上,已知PF1=4,求双曲线的离心率的最大值
已知双曲线x^2/m-y^2/n=1的一条渐近线方程为y=(4/3)x,则该双曲线的离心率e为
一道双曲线的题,已知双曲线X^/A^-Y^/B^=1的离心率为2√3/3,焦距为2C,且2A^=3C,双曲线上一点P满足
已知双曲线x²/4+y²/m=1的离心率为1/2,求m
已知双曲线过点P(4,1),离心率e=(根号下5)/2,且两条堆成轴为x轴,y轴.求1)双曲线方程 2)写出它的顶点坐标
双曲线离心率已知双曲线a方分之x方-y方=1的一条准线方程为x=2分之3,则该双曲线的离心率为
已知双曲线a方分之x方-y方=1的一条准线方程为x=2分之3,则该双曲线的离心率为
圆锥曲线 求离心率已知P为双曲线x^2/a^2-y^2/b^2=1(a大于b大于0)左支上一点,F1·F2为双曲线的左右
已知双曲线x*/a*-y*/b*=1(a>根号2)的两条渐近线的夹角为60°,则双曲线的离心率为多少
已知双曲线与椭圆x^2/36+y^2/49=1有公共的焦点,并且椭圆的离心率与双曲线的离心率之比为3/7,求双曲线的方程
已知椭圆方程为x^2/4+y^2/3=1,求以椭圆的焦点为焦点,离心率为根号2的双曲线方程
已知双曲线x^2/a2 - y^2/a^2 =1离心率,实轴长,虚轴长,焦距依次成等差数列,则此双曲线的方程为?