数列{an}及fn(x)=a1x+a2x^2+…+anx^n,fn(-1)=n•(-1)^n,n=1,2,3
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 07:06:17
数列{an}及fn(x)=a1x+a2x^2+…+anx^n,fn(-1)=n•(-1)^n,n=1,2,3…
1,求a1,a2,a3的值 2,求数列通项 3,证,1/3小于等于fn(1/3)小于1
1,求a1,a2,a3的值 2,求数列通项 3,证,1/3小于等于fn(1/3)小于1
fn(-1) = a1(-1)^1 + a2(-1)^2+.+an(-1)^n = n(-1)^n
fn-1(-1) = a1(-1)^1 + a2(-1)^2+.+an-1(-1)^(n-1)=(n-1)(-1)^(n-1)
上减下得an(-1)^n=(2n-1)(-1)^n
an=2n-1
带入1,2,3,a1=1,a2=3,a3=5
fn(1/3)=1*1/3 + 3*(1/3)^2 + 5*(1/3)^3 +.+ 2n-1*(1/3)^n
1/3*fn(1/3)=1*(1/3)^2 + 3*(1/3)^3 +.+(2n-3)*(1/3)^n + 2n-1*(1/3)^n+1
上下错位相减得2/3*fn(1/3)=1*(1/3) + 2*(1/3)^2 + 2*(1/3)^3 +.+2*(1/3)^n - 2n-1*(1/3)^n+1
=1/3 - 2n-1*(1/3)^n+1 + 2[(1/3)^2 + (1/3)^3 +.+(1/3)^n]
=1/3 - 2n-1*(1/3)^n+1 + 1/3*[1- (1/3)^n-1]
fn(1/3) =1 - (n+1)*(1/3)^n 显而易见小于1
并且由fn(1/3)递增可知fn(1/3)>f1(1/3) fn(1/3)>1/3
fn-1(-1) = a1(-1)^1 + a2(-1)^2+.+an-1(-1)^(n-1)=(n-1)(-1)^(n-1)
上减下得an(-1)^n=(2n-1)(-1)^n
an=2n-1
带入1,2,3,a1=1,a2=3,a3=5
fn(1/3)=1*1/3 + 3*(1/3)^2 + 5*(1/3)^3 +.+ 2n-1*(1/3)^n
1/3*fn(1/3)=1*(1/3)^2 + 3*(1/3)^3 +.+(2n-3)*(1/3)^n + 2n-1*(1/3)^n+1
上下错位相减得2/3*fn(1/3)=1*(1/3) + 2*(1/3)^2 + 2*(1/3)^3 +.+2*(1/3)^n - 2n-1*(1/3)^n+1
=1/3 - 2n-1*(1/3)^n+1 + 2[(1/3)^2 + (1/3)^3 +.+(1/3)^n]
=1/3 - 2n-1*(1/3)^n+1 + 1/3*[1- (1/3)^n-1]
fn(1/3) =1 - (n+1)*(1/3)^n 显而易见小于1
并且由fn(1/3)递增可知fn(1/3)>f1(1/3) fn(1/3)>1/3
已知数列{an}及fn(x)=a1x+a2x²+…+anx^n,fn(-1)=[(-1)^n]*n
已知对于数列{an}中,有fn(x)=a1x+a2x^2+...+anx^n,且a1=3,fn(1)=p*(2^n-1/
{an}是等差数列,设fn(x)=a1x a2x^2 ...anx^n,n是正偶数,且已知fn(1)=n^2,fn(-1
已知数列{an}和函数fn(x)=a1x+a2x^2+…+anx^n.当n为正偶数时,fn(-1)=n:已知数列{an}
已知函数f(x)==a1x+a2x+…+anx,n∈N+,且f(1)=n^2,求数列{an}的通项公式
数列题 已知f(x)=a1x+a2x^2+a3x^3+……+anx^n,
在恒等式(1+X)^n=a0+a1X+a2X^2+……+anX^n(n为偶数)中,a0+a1+a2+……+an=?
函数f(x)=a1x+a2x^2+.+anX^n,a1,a2,a3,...an成等差数列,n为正偶数,又f(1)=n^2
已知f(x)=a1x+a2x^2+a3x^3+...+anx^n,n为正整数,a1,a2,a3,...an组成等比数列,
函数f(x)=a1x+a2x^2+.+anX^n,a1,a2,a3,...an成等差数列
已知S(x)=a1x+a2x^2+L+anx^n,且a1,a2,L,an,组成等差数列,设S(1)=n^2
已知S(x)=a1x+a2x^2+...+anx^n,且a1,a2,...,an组成等差数列,n为正偶数