证明:若liman=a,limbn=b,则lim(an*bn)=a*b
设limAn=a,limBn=b,试证明:lim{(A1*Bn+A2*Bn-1+...+An*B1)\n}=ab (n-
若liman=a,则lim|an|=|a|
用极限定义证明若liman=A则lim根号an=根号A
已知数列{An}与{Bn}都是公差不为零的等差数列,且limAn/Bn=2,求lim(A1+A2+……+An)/(n*B
若lim[(an^2+bn+c)/(2n-3)]=-2,则a+b=
若lim[2n+(an^2+2n+1)/(bn+1)=1,则a+b
若liman=a求证lim[(a1+a2···+an)/n]=a
设an,bn都是等差数列,其中a1=3,b1=2,b2是a2与a3的等差数列,liman/bn=1/2,求lim(1/a
已知数列{an}、{bn}都是公差不为零的等差数列,且liman/bn=3,求lim(b1+b2+……b3n)/(n*a
微积分证明题证明:若limAn=a,则lim|An|=|a|,但反之不正确,试举例说明.但a=0时,反之也成立,试证明之
极限证明题,设lim an=a(n趋于正无穷),lim bn=b(n趋于正无穷).用E-N法证明:lim(a0*bn+a
证明若pk>o(k=1,..)lim[pn/p1+p2+……+pn]=0,liman=a则lim{[p1an+p2a(n