作业帮 > 数学 > 作业

证明函数的单调性函数f(x)对任意的a,b属于R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 00:00:42
证明函数的单调性
函数f(x)对任意的a,b属于R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.
求证:f(x)是R上的增函数
实在做不出来了,求大神帮忙.谢谢!
证明函数的单调性函数f(x)对任意的a,b属于R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1
设x1、x2为R上的任意两个数,且x1<x2
f(x2)-f(x1)
=f(x2-x1+x1)-f(x1)
=f(x2-x1)+f(x1)-1-f(x1)
=f(x2-x1)-1
因为x2-x1>0,且当x>0时,f(x)>1
所以f(x2-x1)-1>0,即f(x2)>f(x1)
于是,当x1<x2时,f(x1)<f(x2)
所以f(x)是R上的增函数
再问: f(x2-x1+x1)到f(x2-x1)+f(x1)-1这一步我不太懂
再答: f(x2-x1+x1)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1