作业帮 > 数学 > 作业

求cosx/2*cosx/4*`````cosx/2^n n趋于无穷大!的极限

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 20:12:44
求cosx/2*cosx/4*`````cosx/2^n n趋于无穷大!的极限
求cosx/2*cosx/4*`````cosx/2^n n趋于无穷大!的极限
y=cosx/2*cosx/4*`````cosx/2^n
y=(2sinx^n/2*cosx/2*cosx/4*`````cosx/2^n)/2sinx/2^n
y=2^(n-1)cosx/2*cosx/4*`````cosx/2^(n-1)*sin/2^(n-1)/2^nsinx/2^n
y=2^(n-2)cosx/2*cosx/4*`````cosx/2^(n-2)*sin/2^(n-2)/2^nsinx/2^n
…………………………
y=sinx/(2^nsinx/2^n)
因为u*sin1/u 当u趋于无穷大时,极限为1
所以cosx/2*cosx/4*`````cosx/2^n n趋于无穷大!的极限为sinx