连续与可导有这样两个定理或者推论1> 函数f(x)在点x0处可导的充分必要条件是 f'(x0)的左右极限存在且相等.2>
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 03:29:33
连续与可导
有这样两个定理或者推论
1> 函数f(x)在点x0处可导的充分必要条件是 f'(x0)的左右极限存在且相等.
2> 如果函数f(x)在点x0处可导,则函数在该点必然连续
现在假定有函数f(x)在其定义域上连续可导.在定义域上加入可去间断点x0,得到函数g(x).那这个g(x)是可导还是不可导呢?
例如 f(x)=sinx.g(x)=sinx,x不为0时.g(0)=1
两句话都是出自 《高等数学》教材 同济大学主编,高教出版社出版 第五版
第一个是 p82 关于单侧导数的描述
第二个是 p84 关于函数可导性与连续性的关系
关于我举的例子,g(x)在x0时可导,有g'(x)=cosx.同时,g'(0)的左导数和右导数存在且相等,都是cos0.那么g(x)在x=0这一点可导.所以g(x)在整个定义域上可导.左右极限都是存在的
有这样两个定理或者推论
1> 函数f(x)在点x0处可导的充分必要条件是 f'(x0)的左右极限存在且相等.
2> 如果函数f(x)在点x0处可导,则函数在该点必然连续
现在假定有函数f(x)在其定义域上连续可导.在定义域上加入可去间断点x0,得到函数g(x).那这个g(x)是可导还是不可导呢?
例如 f(x)=sinx.g(x)=sinx,x不为0时.g(0)=1
两句话都是出自 《高等数学》教材 同济大学主编,高教出版社出版 第五版
第一个是 p82 关于单侧导数的描述
第二个是 p84 关于函数可导性与连续性的关系
关于我举的例子,g(x)在x0时可导,有g'(x)=cosx.同时,g'(0)的左导数和右导数存在且相等,都是cos0.那么g(x)在x=0这一点可导.所以g(x)在整个定义域上可导.左右极限都是存在的
答案在插图 你错了,首先你就认定g(x)的导数就是cosx这本身就是错的,因为在零点是不连续的.在其他的地方我不否定是cosx,但是0点处是个断点,求导数不是把0值代入的,要用定义的,我的插图已经给出定义了,分母是不为0的,那个极限是不存在的.特别是对你的这个可去间断点来说,左右极限都是不存在的 .对与那种跳跃间断点要么是左极限存在要么是右极限存在.你再好好体会.对于没有定义的点求导一定要返回到导数的定义,深刻理解导数的本质.其实从那个极限式也知道如果某点处导数不连续了也就是该点的函数值发生了阶梯变化,那么在极限式的分母两函数值相减就不可能在他两自变量相近的时候而趋向0了,那么与一个趋向0的自变量差值相比求极限怎么可能存在呢?
函数F(x)在点X0处可导的充分必要条件是 F(x)在点X0处的左右导数都存在且相等./////////////////
证明:当x趋近于x0是,函数f(x)的极限存在的充分必要条件是左,右极限各存在且相等
为什么函数f(x,y)在点(x0,y0)处偏导数存在,是函数f(x,y)在该点连续的既不充分也不必要条件?
根据函数极限的定义证明:函数f(x)当x→x0时极限存在的充分必要条件是左极限,右极限各自存在并且相等.
函数极限证明题证明函数f(x)当x→x0时极限存在的充分必要条件是左极限和右极限各自存在并且相等
可导与连续之间的关系【极限存在】:左右极限存在且相等连续:【极限存在】就连续可导:【极限存在】+极限值=f(x0)lim
极限limx→x0f(x)存在是函数f(x)在点x=x0处连续的( )
证明:若函数在区间[x0-a,x0]上连续,在(x0-a,x0)内可导,且limx->x0-(x0左极限)f'(x)存在
设函数f(x)在点x0的某邻域内有定义,则f(x)在点x0可导的充分必要条件是
偏导数fx(x0,y0)与fy(x0,y0)存在是函数f(x,y)在点(x0,y0)连续的什么条件?
f(x0-0)与f(x0+0)都存在时函数f(x)在点x0处有极限的什么条件
设函数y=f(x)在点x0的某一邻域内有定义,证明:f'(x0)=A的充分必要条件是f_'(x0)=f+'(x0)=A