求定积分∫dx/[(x^2)*((1+x^2)^(1/2))],其中积分上限是根号3,积分下限是1,求详细过程~
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 23:04:05
求定积分∫dx/[(x^2)*((1+x^2)^(1/2))],其中积分上限是根号3,积分下限是1,求详细过程~
F(x)=∫dx/[(x^2)*((1+x^2)^(1/2))]
设x=tant,则dx=sec²tdt,∵x∈[1,√3],∴t∈[π/4,π/3]
∴F(x)=∫dx/[(x^2)*((1+x^2)^(1/2))] x∈[1,√3]
=∫sec²tdt/[tan²t*(1+tan²t)^(1/2)] t∈[π/4,π/3]
=∫sec²tdt/(tan²t*sect)
=∫sectdt/tan²t
=∫(cos²t/sin²t)*(1/cost)*dt
=∫(cost/sin²t)dt
=∫dsint/sin²t
=(-1/sint) t∈[π/4,π/3]
=1/sin(π/4)-1/sin(π/3)
=2/√2-2/√3
=(3√2-2√3)/3
设x=tant,则dx=sec²tdt,∵x∈[1,√3],∴t∈[π/4,π/3]
∴F(x)=∫dx/[(x^2)*((1+x^2)^(1/2))] x∈[1,√3]
=∫sec²tdt/[tan²t*(1+tan²t)^(1/2)] t∈[π/4,π/3]
=∫sec²tdt/(tan²t*sect)
=∫sectdt/tan²t
=∫(cos²t/sin²t)*(1/cost)*dt
=∫(cost/sin²t)dt
=∫dsint/sin²t
=(-1/sint) t∈[π/4,π/3]
=1/sin(π/4)-1/sin(π/3)
=2/√2-2/√3
=(3√2-2√3)/3
求定积分∫(dx)/(x+(1-x^2)^1/2),积分上限是1,积分下限是0,
求(根号x+1/x)dx的定积分,上限是2,下限是1
求定积分∫|x|dx,上限1,下限-2
求定积分:[(2+根号下x)分之1]dx,上限是1,下限是0?
求积分∫(arcsinx)dx/[(1-x^2)^(1/2)],其中积分上限是1,积分下限是0,
求定积分∫dx/[根号(1+x^2)^3],上限1,下限0.
∫dx/(1+x^2)上限根号3下限-1求定积分
求定积分:∫dx/x(根号x^2-1),上限 - (根号2),下限-2
求定积分∫『上限是1下限是0』xe^(2x)dx
求定积分∫上限2,下限1 (根号x-1 ) /x dx,
上限根号3下限1求dx/x^2(1+x^2)的定积分
求定积分 上限1 下限0 x 根号3-x^2 dx