F是m*r的列满秩矩阵,G是r*n的行满秩矩阵,证明F*G的秩=r.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 02:56:34
F是m*r的列满秩矩阵,G是r*n的行满秩矩阵,证明F*G的秩=r.
这好像是m*n矩阵的满秩分解的逆问题,可以想象是这样,不过我需要严格的证明,哪位砖家能给点提醒,
不太清楚一楼的回复中对F和G的分解用的是什么方法?
这好像是m*n矩阵的满秩分解的逆问题,可以想象是这样,不过我需要严格的证明,哪位砖家能给点提醒,
不太清楚一楼的回复中对F和G的分解用的是什么方法?
用一下相抵标准型就行了.
存在阶数分别为m,r,r,n的可逆矩阵P1,Q1,P2,Q2,使得
F=P1[I_r,0]Q1
G=P2[I_r;0]Q2
那么FG=P1[Q1P2,0;0,0]Q2
补充:
这个不是最基本的相抵变换吗,可以用Gauss消去法实现
对任何矩阵A,总存在可逆阵P,Q使得
PAQ=
I 0
0 0
存在阶数分别为m,r,r,n的可逆矩阵P1,Q1,P2,Q2,使得
F=P1[I_r,0]Q1
G=P2[I_r;0]Q2
那么FG=P1[Q1P2,0;0,0]Q2
补充:
这个不是最基本的相抵变换吗,可以用Gauss消去法实现
对任何矩阵A,总存在可逆阵P,Q使得
PAQ=
I 0
0 0
设m*r矩阵F是列满秩,r*n矩阵G是行满秩,证明秩(FG)=r,
设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC
设A是m*n矩阵,r(A)=r,证明:存在秩为n-r的n阶矩阵B,使AB=0
问个线性代数题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×r矩阵B与秩为r的r×n矩阵C使A=BC
设A是m×n的矩阵,B是n×p的矩阵,证明:若R(A)=n,R(AB)=R(B)
设A是m*n矩阵,证明:r(A)=r的充分必要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,
A是m*n的矩阵,B是n*m的矩阵,证明r(Em-AB)+n=r(En-BA)+m
设A是m*n矩阵,证明A的秩等于其转置矩阵的秩,即r(A)=r(A')
1.令Q是有理数域,R是一个环,而f,g都是Q到R的环同构,且对任意整数n有f(n)=g(n),证明f=g
设a,b分别是m*n,n*s矩阵且b为行满值矩阵,证明:r(ab)=r(a)的详细解题
设N*M阶矩阵A的秩为R,证明:存在秩为R的N*R阶矩阵P及秩为R的R*M阶矩阵Q,使A=PQ
设A为m×n矩阵,证明r(A)=1的充分必要条件是存在m×1矩阵α≠0与n≠1矩阵...