a^2+c^2-b^2=1/2ac,(1)sin^2(A+C)/2+cos2B的值 (2)若b=2,求三角形ABC面积的
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 13:03:29
a^2+c^2-b^2=1/2ac,(1)sin^2(A+C)/2+cos2B的值 (2)若b=2,求三角形ABC面积的最大值
(1)因为a^2+c^2-b^2=1/2ac
根据余弦定理可得cosB=(a^2+c^2-b^2)/(2ac)=1/4
因为sin^2(A+C)/2=sin^2(π/2-B/2)=cos^2(B/2)=(cosB+1)/2
cos2B=2cos^2B-1
所以sin^2(A+C)/2+cos2B=(cosB+1)/2+2cos^2B-1=-1/4
(2)因为cosB=1/4,即B的角度是一定的,b=2
则画一个△ABC的外接圆,点B在圆弧上运动
根据圆中同一条圆弧对应的角相等,结合图像可知,只有在AB=BC的时候,三角形ABC面积最大
即a=c,则a^2+c^2-b^2=1/2ac可化为a^2=3b^2/2=6
因为cosB=1/4,所以sinB=√15/4
所以S△ABC最大值=1/2*AB*BC*sinB=1/2*a^2*√15/4=3√15/4
根据余弦定理可得cosB=(a^2+c^2-b^2)/(2ac)=1/4
因为sin^2(A+C)/2=sin^2(π/2-B/2)=cos^2(B/2)=(cosB+1)/2
cos2B=2cos^2B-1
所以sin^2(A+C)/2+cos2B=(cosB+1)/2+2cos^2B-1=-1/4
(2)因为cosB=1/4,即B的角度是一定的,b=2
则画一个△ABC的外接圆,点B在圆弧上运动
根据圆中同一条圆弧对应的角相等,结合图像可知,只有在AB=BC的时候,三角形ABC面积最大
即a=c,则a^2+c^2-b^2=1/2ac可化为a^2=3b^2/2=6
因为cosB=1/4,所以sinB=√15/4
所以S△ABC最大值=1/2*AB*BC*sinB=1/2*a^2*√15/4=3√15/4
在三角形ABC中,角A,B,C所对的边分别是a,b,c已知cos2B+1=2sin^2B/2 求角B
在三角形ABC中,内角A,B,C的对边分别为a,b,c,且cos2B+cosB=0(1)求角B(2)若b=根7,a+c=
在三角形ABC中,角A,B,C所对的边分别是a,b,c已知cos2B+1=2sin^2B/2 b=√3 a+c最大值
在三角形ABC中,角A,B,C所对的边分别为a,b,c,且a2+c2-b2=1/2ac.求sin2A+C/2+COS2B
在三角形ABC中角A B C所对应的边分别为a b c若A+C=2B a+c=8 ac=15求b值及三角形ABC的面积
在三角形ABC中,A,B,C为三个内角,f(B)=4cosB·[sin(π/4+B/2)]^2+√3cos2B-2cos
已知三角形ABC的三个内角A,B,C的对边分别为a,b,c,若sinA,sinB,sinC成等差数列,且2cos2B=8
在三角形ABC中,已知a=2,A=60度.1、若三角形面积等于根号3,求b,c的值.2、若sin(B +C)sin(B-
已知三角形ABC的三个内角A,B,C,的对应边是a,b,c,若a,b,c成等比数列,且2cos2B+5=8cosB,求三
在三角形ABC中,已知a的平方+c的平方-b的平方=1/2ac.若b=2,求三角形ABC面积的最大值.
在三角形ABC中,内角A,B,c的对边a,b,c.已知(2c-a)/b=(cosA-2cosC)/cosB.1、求sin
在三角形ABC中,A,B,C为三个内角,f(B)=4cosB*sin^2(π/4+B/2)+根号3cos2B-2cosB