作业帮 > 综合 > 作业

已知函数f(x)=x3-3ax2+2bx在x=1处有极小值-1,试求a,b的值,(1)并求出f(x)的单调区间(2)在区

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/11 08:50:32
已知函数f(x)=x3-3ax2+2bx在x=1处有极小值-1,试求a,b的值,(1)并求出f(x)的单调区间(2)在区间[
已知函数f(x)=x3-3ax2+2bx在x=1处有极小值-1,试求a,b的值,
(1)并求出f(x)的单调区间
(2)在区间[-2,2]上的最大值与最小值
(3)若关于x的方程f(x)=α有3个不同实根,求实数a的取值范围.
已知函数f(x)=x3-3ax2+2bx在x=1处有极小值-1,试求a,b的值,(1)并求出f(x)的单调区间(2)在区
(1)∵f′(x)=3x2-6ax+2b,函数f(x)=x3-3ax2+2bx在x=1处有极小值-1,
∴f(1)=-1,f′(1)=0
∴1-3a+2b=-1,3-6a+2b=0
解得a=
1
3,b=-
1
2
∴f(x)=x3-x2-x
∴f′(x)=3x2-2x-1
∴由f′(x)=3x2-2x-1>0得x∈(-∞,-
1
3)∪(1,+∞)
由f′(x)=3x2-2x-1<0得x∈(-
1
3,1)
∴函数f(x)的单调增区间为:(-∞,-
1
3),(1,+∞),减区间为:(-
1
3,1)
(2)由(1)可得函数f(x)在[-2,-
1
3)上是增函数,在[-
1
3,1)上是减函数,在[1,2]上是增函数
且f(-2)=-10,f(-
1
3)=
5
27,f(1)=-1,f(2)=2
∴函数f(x)在闭区间[-2,+2]上的最大值f(2)=2
最小值为f(-2)=-10
(3)由(1)函数f(x)的单调增区间为:(-∞,-
1
3),(1,+∞),减区间为:(-
1
3,1),
∴当x=-
1
3时,函数f(x)有极大值f(-
1
3)=
5
27,当x=1时,函数f(x)有极小值f(1)=-1,
∴若关于x的方程f(x)=α有3个不同实根,则必有-1<a<
5
27.