已知f(x)=loga(1-mx)/1+x (0<a<1)为奇函数.(1)求m的值和函数f(
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 13:37:30
已知f(x)=loga(1-mx)/1+x (0<a<1)为奇函数.(1)求m的值和函数f(
已知f(x)=loga(1-mx)/1+x (0<a<1)为奇函数.(1)求m的值和函数f(x)的定义域(2)简单判断f(x)的单调性并解不等式f(2x-1)+f(1-x)>0
已知f(x)=loga(1-mx)/1+x (0<a<1)为奇函数.(1)求m的值和函数f(x)的定义域(2)简单判断f(x)的单调性并解不等式f(2x-1)+f(1-x)>0
第一问
因为f(x)=log(a)[(1-mx)/(1+x)]
所以f(-x)=log(a)[(1+mx)/(1-x)]
-f(x)=-log(a)[(1-mx)/(1+x)]=log(a)[(1+x)/(1-mx)]
因为f(x)为奇函数,即f(-x)=-f(x)恒成立
即log(a)[(1+mx)/(1-x)]=log(a)[(1+x)/(1-mx)]恒成立
即m=1或m=-1(当m=-1时,f(x)=0,其定义域为x≠-1,此时针对第二问就不成立,只考虑第一问这个解没有问题,这也是此题出的歧义之处)
所以f(x)=log(a)[(1-x)/(1+x)]
所以(1-x)/(1+x)>0
解得-1-f(1-x)
f(2x-1)>f(x-1)
故可得
{-1
因为f(x)=log(a)[(1-mx)/(1+x)]
所以f(-x)=log(a)[(1+mx)/(1-x)]
-f(x)=-log(a)[(1-mx)/(1+x)]=log(a)[(1+x)/(1-mx)]
因为f(x)为奇函数,即f(-x)=-f(x)恒成立
即log(a)[(1+mx)/(1-x)]=log(a)[(1+x)/(1-mx)]恒成立
即m=1或m=-1(当m=-1时,f(x)=0,其定义域为x≠-1,此时针对第二问就不成立,只考虑第一问这个解没有问题,这也是此题出的歧义之处)
所以f(x)=log(a)[(1-x)/(1+x)]
所以(1-x)/(1+x)>0
解得-1-f(1-x)
f(2x-1)>f(x-1)
故可得
{-1
已知函数f(x)=loga 1-mx/x-1(a>0,a≠1,m≠1)是奇函数
已知函数F(x)=Loga x-1/1-mx(a大于0 a不等于1)是奇函数 1 求实数m的值 2判断函数f(x)在(1
已知函数f(x)=loga[根号下(2x²+1)-mx]在R上为奇函数,a>1,m>0,(1)求实数m的值.
设函数f(x)=loga(1-mx/x-1)是奇函数(a>0,a=/1),则m的值为多少?
已知函数f(x)=loga(根号下(x^2+m)+x)(a>0且a≠1)为奇函数 (1)求实数m的值 (2)判断
已知函数f (x)=loga(1-x)+loga(x+3)(a>0,a不等于1).求函数f(x)的定义域,求函数f(x)
已知函数f(x)=LOGa(2m-1-mx)/(x+1)(a大于0,a不等于1)是奇函数,定义域为区间D=(-1,1).
已知函数f(x)=loga(2-x)+loga(x+2)(0<a<1) 若函数f(x)的最小值为-2.求a的值
已知函数f(x)=loga[(1-mx)/(x-1)]是奇函数,(其中a>0且a不等于1)
已知f(x)=loga[(1-mx)/x-1](a>0a≠1)是奇函数求m的值判断f(x)在(1,∞上的单调性
已知函数f(x)=loga((x-2)/(x+2))的定义域为[m,n),值域为(Loga(a(n-1)),loga(a
已知f(x)=loga(1+x)/(1-x)(a>0,且a不等于1)求f(x的定义域)?证明f(x)为奇函数?求使f(x