线性代数 对称矩阵三阶对成矩阵A 的特征值 是λ1=1 λ2=2 λ3=3 λ1与λ2的 特征向量为 (-1,-1,1)
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/11 05:09:38
线性代数 对称矩阵
三阶对成矩阵A 的特征值 是λ1=1 λ2=2 λ3=3 λ1与λ2的 特征向量为
(-1,-1,1)和(1,-2,-1) 要求算出属于λ3=3 的特征向量
然后我就 算出 x2=0 x3=x1 那答案应该是 (a,0,a) a为任意实数 可是答案是(1,0,1) 我想问问 这是为什么呢?难道是取1简便?
三阶对成矩阵A 的特征值 是λ1=1 λ2=2 λ3=3 λ1与λ2的 特征向量为
(-1,-1,1)和(1,-2,-1) 要求算出属于λ3=3 的特征向量
然后我就 算出 x2=0 x3=x1 那答案应该是 (a,0,a) a为任意实数 可是答案是(1,0,1) 我想问问 这是为什么呢?难道是取1简便?
求属于λ3=3 的特征向量
就是计算出齐次线性方程组的非零解
你得到的是属于特征值λ3=3 的全部特征向量:(a,0,a)^T=a(1,0,1)^T,a为非零常数
答案给的是属于特征值λ3=3 的线性无关的特征向量,相当于齐次线性方程组的一个基础解系
都对!
就此题而言,你的结论更好
就是计算出齐次线性方程组的非零解
你得到的是属于特征值λ3=3 的全部特征向量:(a,0,a)^T=a(1,0,1)^T,a为非零常数
答案给的是属于特征值λ3=3 的线性无关的特征向量,相当于齐次线性方程组的一个基础解系
都对!
就此题而言,你的结论更好
线性代数问题 已知三阶对称矩阵A的一个特征值为λ=2,对应的特征向量α=(1,2,-1),且A的主对角线上的元素全为0,
设3阶对称矩阵A的特征值分别是λ1=-53,λ,2=λ3=63,与特征值λ1=53对应的特征向量为P1=(-6,-6,3
线性代数题目A为3阶实对称矩阵,属于特征值1的特征向量为(1,-1,1)还有另外两个特征值2,-3.求另外两个特征向量.
线性代数:设三阶实对称矩阵A的特征值为λ1=-1,λ2=λ3=1,已知A的属于λ1=-1的特征向量为p1={0,1,1}
实对称矩阵 特征值设A是3阶实对称矩阵 启特征值为1,1,-1,且对应的特征向量为a=(1,1,1)b=(2,2,1)求
设三阶对称矩阵A的特征值为3、6、6,与特征值3对应的特征向量为P1=(1 1 1)T,求矩阵A
线性代数~设3阶实对称矩阵A的特征值为1,2,-2,α1=(1,-1,1)^T是A的属于1的特征向量.B=A^5-4A^
求特征向量?A是三阶实对称矩阵,其特征值为λ1=3,λ2=λ3=5,λ1=3的线性无关特征向量为(-1 0 1)^T
设3阶对称矩阵A有特征值2,1,1,对应于2的特征向量为a1=(1;-2;2),求矩阵A
请问一个线性代数问题求矩阵A=-1 1 0-4 3 01 0 2的特征值和特征向量矩阵A 的特征方程为λ+1 -1 0︱
一道线性代数题!3阶实对称矩阵A的特征值为2、5、5,A属于特征值2的特征向量是(1,1,1)的转置,则A属于特征值5的
A为三阶矩阵,λ1,λ2,λ3为三个特征值,对应特征向量a1,a2,a3,