已知数列{an}满足a1=5,a2=5,a(n+1)=an+6a(n-1)(n≥2)...我是答案看不懂.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 14:26:57
已知数列{an}满足a1=5,a2=5,a(n+1)=an+6a(n-1)(n≥2)...我是答案看不懂.
(1)求证:{a(n+1)+2an}是等比数列;
(2)求数列{an}的通项公式;
(1)由a(n+1)=an+6a(n-1),a(n+1)+2an=3(an+2(an-1)) (n≥2)
∵a1=5,a2=5 ∴a2+2a1=15
故数列{a(n+1)+2an}是以15为首项,3为公比的等比数列………………5分
(2)由(1)得a(n+1)+2an=5•3^n
由待定系数法可得(a(n+1)-3^(n+1))=-2(an-3^n)
即an-3^n=2(-2)^(n-1)
故an=3^n+2(-2)^(n-1)=3^n-(-2)^n…………………………………………10分
请问:如何由待定系数法得(a(n+1)-3^(n+1))=-2(an-3^n)?.
(1)求证:{a(n+1)+2an}是等比数列;
(2)求数列{an}的通项公式;
(1)由a(n+1)=an+6a(n-1),a(n+1)+2an=3(an+2(an-1)) (n≥2)
∵a1=5,a2=5 ∴a2+2a1=15
故数列{a(n+1)+2an}是以15为首项,3为公比的等比数列………………5分
(2)由(1)得a(n+1)+2an=5•3^n
由待定系数法可得(a(n+1)-3^(n+1))=-2(an-3^n)
即an-3^n=2(-2)^(n-1)
故an=3^n+2(-2)^(n-1)=3^n-(-2)^n…………………………………………10分
请问:如何由待定系数法得(a(n+1)-3^(n+1))=-2(an-3^n)?.
a(n+1)+2an=5•3^n 可推出 a(n+1)=5•3^n-2an=(3+2)•3^n-2an=3•3^n+2•3^n-2an这步应该看得懂吧,由此可得a(n+1)=3•3^n+2•3^n-2an=3^(n+1)-2(an-3^n),可推出:
a(n+1)-3^(n+1)=-2(an-3^n),看懂了吗?
再问: 可是思路是怎么样的呢?为什么要拆成2+3啊?
再答: a(n+1)=3^(n+1)-2(an-3^n),才可以推出An的通项公式啊,还有,你题目全部写出来了吗? (a(n+1)-3^(n+1))=-2(an-3^n)这一步到an-3^n=2(-2)^(n-1)似乎还缺少已知条件呢!
a(n+1)-3^(n+1)=-2(an-3^n),看懂了吗?
再问: 可是思路是怎么样的呢?为什么要拆成2+3啊?
再答: a(n+1)=3^(n+1)-2(an-3^n),才可以推出An的通项公式啊,还有,你题目全部写出来了吗? (a(n+1)-3^(n+1))=-2(an-3^n)这一步到an-3^n=2(-2)^(n-1)似乎还缺少已知条件呢!
已知数列{an}满足条件:a1=5,an=a1+a2+...a(n-1) n大于等于2,求数列{an}的通项公式
已知数列{an}中满足a1=1,a(n+1)=2an+1 (n∈N*),证明a1/a2+a2/a3+…+an/a(n+1
已知数列{an}满足a1=1,a1+a2+a3+.+a(n-1)-an=-1(n≥2且n属于N+).
已知数列{an}满足a1=1,an=logn(n+1)(n≥2,n∈N*).定义:使乘积a1?a2?a
数列an满足a1=2,a2=5,a(n+2)=3a(n+1)-2an
已知数列{an}满足a1=1;an=a1+2a2+3a3+...+(n-1)a(n-1);
已知在数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+S(n-2)=2S(n-1)+2^(n-1)(n≥3)
已知数列{an}满足a1=1,an=a1 +1/2a2 +1/3a3 … +1/(n-1)a(n-1),(n>1,n∈N
已知数列{an}满足a1=1,a2=3,a(n+2)=3a(n+1)-2an
已知一个数列{An}满足递推公式:An=3A(角标n-1)(n≥2),且A1=4,求数列{An}通项
已知数列{an}满足a1=1;an=a1+2a2+3a3+...+(n-1)a(n-1)(n≥2);求通项公式
高三数学数列题已知{an}满足a1=5,a2=5,an+1=an+6a(n-1)(n>=2,n∈N+),且当λ=2,或λ