求解一道转动惯量的高数题
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 00:10:50
求解一道转动惯量的高数题
求均匀物体:x^2+y^2+z^2=z^2,关于oz轴的转动惯量(密度设为I)
求均匀物体:x^2+y^2+z^2=z^2,关于oz轴的转动惯量(密度设为I)
思路:最基本的物理公式:转动惯量I
I=∫ r²dm
然后再看题目的具体要求,看看是重积分,曲线积分还是曲面积分
先说下dm:
①重积分:二重积分dm=ρdσ,三重积分dm=ρdV;
②曲线积分:dm=ρds;
③曲面积分:dm=ρdS;
ρ:题目如果没具体说明或是均匀或只给个常数\代数,那么ρ就是个常数;如果给了ρ的方程,代入就好了.
r:表示与.的距离,比如说,在三维空间:
与x轴距离:那么公式中r²=y²+z²
与原点距离:那么公式中r²=x²+y²+z²
与平面yOz距离:那么公式中r²=x²
在二维平面:
与x轴距离:那么公式中r²=y²
与原点距离:那么公式中r²=x²+y²
等等
这道题目所给的区域明显是个三维物体,属于三重积分,密度I,是个常数
它要的事关于oz轴的,因此r就是到z轴的距离,所以r²=x²+y²
这道题我设转动惯量为J
J=∫ ∫ ∫ I·(x²+y²)dV
Ω
其中Ω:x^2+y^2+z^2=z^2
接下去就是三重积分的做法了.等等我写字再把剩下的过程拍照传上去吧 再答:
再答: 话说你的球坐标有没有漏打平方。。如果是≤2平方的话就可以算出三分之八pi了
再答: 手机上的平方好像显示不出来
再答:
再答: 如果感觉这道题还有什么问题就提吧
再答: 刚刚几个地方改一下
再答: 过程有些错误
再答:
I=∫ r²dm
然后再看题目的具体要求,看看是重积分,曲线积分还是曲面积分
先说下dm:
①重积分:二重积分dm=ρdσ,三重积分dm=ρdV;
②曲线积分:dm=ρds;
③曲面积分:dm=ρdS;
ρ:题目如果没具体说明或是均匀或只给个常数\代数,那么ρ就是个常数;如果给了ρ的方程,代入就好了.
r:表示与.的距离,比如说,在三维空间:
与x轴距离:那么公式中r²=y²+z²
与原点距离:那么公式中r²=x²+y²+z²
与平面yOz距离:那么公式中r²=x²
在二维平面:
与x轴距离:那么公式中r²=y²
与原点距离:那么公式中r²=x²+y²
等等
这道题目所给的区域明显是个三维物体,属于三重积分,密度I,是个常数
它要的事关于oz轴的,因此r就是到z轴的距离,所以r²=x²+y²
这道题我设转动惯量为J
J=∫ ∫ ∫ I·(x²+y²)dV
Ω
其中Ω:x^2+y^2+z^2=z^2
接下去就是三重积分的做法了.等等我写字再把剩下的过程拍照传上去吧 再答:
再答: 话说你的球坐标有没有漏打平方。。如果是≤2平方的话就可以算出三分之八pi了
再答: 手机上的平方好像显示不出来
再答:
再答: 如果感觉这道题还有什么问题就提吧
再答: 刚刚几个地方改一下
再答: 过程有些错误
再答: