作业帮 > 数学 > 作业

已知OP=(2,1)OA=(1,7),OB=(5,1)设X是直线OP上的一点(O为坐标原点)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 07:03:58
已知OP=(2,1)OA=(1,7),OB=(5,1)设X是直线OP上的一点(O为坐标原点)
(1)求使XA·XB取得最小值时的OX;
(2)对(1)中求出的点X,求cos∠AXB的值.
以上均为向量
已知OP=(2,1)OA=(1,7),OB=(5,1)设X是直线OP上的一点(O为坐标原点)
(1)设X(x,y),在OP上 利用向量OP‖向量OX,得x=2y
XA=(1-x),XB=(5-x,1-y)
XA·XB=(x-1)(x-5)+(y-1)(y-7)=5y^2-20y+12=5(y-2)^2-8
∴OX(4,2)时,XA·XB取最小值-8
(2)XA=(-3,5) XB=(1,-1)
cos∠AXB=(XA·XB)/(|XA|·|XB|)=-4√17/17