有多少种物态?不是物态变化!
来源:学生作业帮 编辑:大师作文网作业帮 分类:物理作业 时间:2024/11/17 15:09:16
有多少种物态?
不是物态变化!
不是物态变化!
物态是指物质在一定条件下所处的相对稳 定的状态.按传统的、经典的观点,物质有三 态:固态、液态和气态.当组成物质的原子或分 子由于相互作用力的约束,只能围绕各自的平 衡位置作微小振动时,表现为固态,固体在一定 条件下能够保持一定的体积和形状;当分子或 原子运动得比较剧烈,使其没有固定的平衡位 置,可以作长程的漂移,但还不致分散远离时, 表现为液态,液体在一定条件下能保持一定的 体积,但不能保持其形状,液体的形状由容纳它 的容器来决定;如果不但分子或原子的平衡位 置没有了,而且能在空间作自由运动,能够互相 分散远离,就表现为气态.
二、凝聚态的提出
实际上,固态和液态之间往往没有严格的 界线.固体分为晶体和非晶体.晶体有确定的 熔点;非晶体却没有确定的熔点,而是有一个从 固态软化为液态的温度范围(称为软化温度). 当非晶体处在它的软化温度范围内时,无法说 出物质是处于固态还是液态.
此外,胶体也是介于固态和液态之间的一 种中间状态.
电流变液 在通常条件下是一种悬浮液, 它在电场的作用下可发生液体—固体的转变. 当外加电场强度大大低于某个临界值时,电流 变液呈液态;当电场强度大大高于这个临界值 时,它就变成固态;在电场强度的临界值附近, 这种悬浮液的粘滞性随电场强度的增加而变 大,这时很难说它是呈液态还是呈固态.
固体分为晶体和非晶态固体,晶体和非晶 体的特性不同的基本原因是组成物质的原子、 分子空间排列的有序和无序.常见物质的固、 液、气三态的转变,就是构成它的原子、分子空 间排列的有序—无序的变化.
在气态,分子的空间位置是完全无规的,分 子可以在空间自由运动,这是一种高度无序的 状态.
晶体结构是长程有序的,也就是说,构成晶 体的原子在整个空间(或者至少在一个长距离 的宏观范围内)的排列是有规则的、周期性的, 整个晶体可以看做是一个小单位——元胞的周 期性重复.
非晶体是长程无序,短程有序的,也就是 说,在非晶体中一个宏观的范围内,原子的空间 排列是不规则的,但是在每个局部,在几个或十 几个原子间距的范围内,却常常仍有一定程度 的规则排列.在液体中,原子的空间排列同样 是长程无序,短程有序的.
尽管非晶态固体的原子被固定在空间某点附近,而液体中的原子能够漂移,可是液体和非 晶态固体还是极为相似的,因此人们有时把非 晶态固体称为过冷液体.如果能获得非晶体内 原子排列的瞬时图像,那么它将和在液体中得 到的瞬时图像相同.因此,这两种物质可以用 同样的数学形式来描述.
所以,从物质结构之有序—无序的角度来 看,非晶态固体应该和液体归为一类.晶体和 非晶体才是性质截然不同的两类物质. 液晶可以流动,似乎是液态物质;然而液晶 分子的空间排列具有长程有序性,导致液晶具 有晶体的某些特性,所以不能简单地把液晶归 入液态或固态.事实上,液晶相是某种物质从 固相转变到液相或从液相转变到固相过程中的 一种中间相.
综上所述,把物态划分为固态和液态不是 很准确、很科学的.于是人们又把固态、液态和 介于两者之间的各种状态,以及只有在低温下 才存在的特殊量子态(如:超流态、玻色—爱因斯 坦凝聚),还包括稠密气体的物态统称为物质的 凝聚态.物质的气态则专指稀薄气体的物态. 凝聚态和气态的基本区别是:凝聚态物质中的 粒子(原子、离子、分子)间存在相互作用;气态 物质分子间的相互作用非常小,近似地可以忽 略不计.
三、等离态和超固态
气态和凝聚态并没有完全包括物质所有的 状态,有人提出,除此之外还应该增划等离态和 超固态这两种物态.
当气体分子的能量进一步增大,分子运动 更加剧烈时,气体分子高度电离成正离子和电 子的混合集团,这种状态称为等离态.等离态 的严格定义是:含有足够数量的自由带电粒子, 有较大的电导率,其运动主要受电磁力支配的 物质状态.等离体由带正电的离子和带负电的 电子,也可能还有一些中性的原子和分子所组 成,粒子在两次碰撞之间在空间作长程运动,其 空间位置是完全无规的.
当压强超过1024巴,密度超过1011一1012 克/厘米3时,原子结构被破坏,原子外围的电子 壳层被挤压到原子核的范围,这种状态称为超 固态.超固态又可分为性质完全不同的中子 态和黑洞,在宇宙空间中已经观察到了这两种 物态的存在.
当核外电子被挤压进原子核内,与核内质 子结合成中子时,物质形成简并中子气状态,称 为中子态.脉冲星是一种发射出短周期电磁波 脉冲辐射的天体,宇宙间已经发现了几百颗脉 冲星,普遍认为它们是旋转着的中子星,中子星 的物态就是中子态.
一个原先质量为4—8个太阳质量的恒星, 在演化过程中当其内部燃料耗尽,核反应停止 后,会发生引力坍缩而形成简并中子气状态,这 种简并中子气的压强有可能与引力收缩作用达 到平衡,这时就形成中子星.在恒星坍缩形成 中子星的过程中要发生“爆发”.当它猛烈收缩 时,巨大的引力势能被释放出来,把恒星的外壳 掀掉,向星际空间抛射出大量物质,这就是所谓 的“超新星爆发”.爆发后剩余下来的核心部分 质量若大约为1.4—2个太阳质量,则形成中子 星;若坍缩中心核的质量超过太阳质量的2倍, 则可能变成黑洞.
黑洞的密度比中子星的密度大得多,在黑 洞内引力非常强,任何物质(包括光)都不能从 中逸出,而外界的物质却能被吸入其中.因此 无法观测到来自黑洞内部的辐射,但是黑洞与 外界仍有引力作用,可以通过引力场探测黑洞 的存在.
四、新的说法——物质有六态
当等离体被彻底电离时,核外电子完全被 剥离,形成原子核和电子的混合集团.这时如 果等离体的能量继续增加,就可能导致原子核 也分裂为(基本)粒子,形成另一种物态.物质 形成由粒子组成的粒子气状态,称为粒子态.
真空中的电磁波,亦即光子气,是自然界中 常见的一种物质,它的物态应该属于粒子态.除 此以外,在自然界中很难见到粒子态,但是在实 验室中有可能在小范围短暂的时间内制造出粒 子态.例如,将一团氢气中的氢分子完全离解和 电离,就形成了由质子和电子组成的粒子态.
粒子态往下一个层次的物态应该是粒子分解成夸克而形成夸克气的态,称为夸克态.由于在实验中尚未发现自由夸克,因此夸克态是否存在尚有待实验的证实.
二、凝聚态的提出
实际上,固态和液态之间往往没有严格的 界线.固体分为晶体和非晶体.晶体有确定的 熔点;非晶体却没有确定的熔点,而是有一个从 固态软化为液态的温度范围(称为软化温度). 当非晶体处在它的软化温度范围内时,无法说 出物质是处于固态还是液态.
此外,胶体也是介于固态和液态之间的一 种中间状态.
电流变液 在通常条件下是一种悬浮液, 它在电场的作用下可发生液体—固体的转变. 当外加电场强度大大低于某个临界值时,电流 变液呈液态;当电场强度大大高于这个临界值 时,它就变成固态;在电场强度的临界值附近, 这种悬浮液的粘滞性随电场强度的增加而变 大,这时很难说它是呈液态还是呈固态.
固体分为晶体和非晶态固体,晶体和非晶 体的特性不同的基本原因是组成物质的原子、 分子空间排列的有序和无序.常见物质的固、 液、气三态的转变,就是构成它的原子、分子空 间排列的有序—无序的变化.
在气态,分子的空间位置是完全无规的,分 子可以在空间自由运动,这是一种高度无序的 状态.
晶体结构是长程有序的,也就是说,构成晶 体的原子在整个空间(或者至少在一个长距离 的宏观范围内)的排列是有规则的、周期性的, 整个晶体可以看做是一个小单位——元胞的周 期性重复.
非晶体是长程无序,短程有序的,也就是 说,在非晶体中一个宏观的范围内,原子的空间 排列是不规则的,但是在每个局部,在几个或十 几个原子间距的范围内,却常常仍有一定程度 的规则排列.在液体中,原子的空间排列同样 是长程无序,短程有序的.
尽管非晶态固体的原子被固定在空间某点附近,而液体中的原子能够漂移,可是液体和非 晶态固体还是极为相似的,因此人们有时把非 晶态固体称为过冷液体.如果能获得非晶体内 原子排列的瞬时图像,那么它将和在液体中得 到的瞬时图像相同.因此,这两种物质可以用 同样的数学形式来描述.
所以,从物质结构之有序—无序的角度来 看,非晶态固体应该和液体归为一类.晶体和 非晶体才是性质截然不同的两类物质. 液晶可以流动,似乎是液态物质;然而液晶 分子的空间排列具有长程有序性,导致液晶具 有晶体的某些特性,所以不能简单地把液晶归 入液态或固态.事实上,液晶相是某种物质从 固相转变到液相或从液相转变到固相过程中的 一种中间相.
综上所述,把物态划分为固态和液态不是 很准确、很科学的.于是人们又把固态、液态和 介于两者之间的各种状态,以及只有在低温下 才存在的特殊量子态(如:超流态、玻色—爱因斯 坦凝聚),还包括稠密气体的物态统称为物质的 凝聚态.物质的气态则专指稀薄气体的物态. 凝聚态和气态的基本区别是:凝聚态物质中的 粒子(原子、离子、分子)间存在相互作用;气态 物质分子间的相互作用非常小,近似地可以忽 略不计.
三、等离态和超固态
气态和凝聚态并没有完全包括物质所有的 状态,有人提出,除此之外还应该增划等离态和 超固态这两种物态.
当气体分子的能量进一步增大,分子运动 更加剧烈时,气体分子高度电离成正离子和电 子的混合集团,这种状态称为等离态.等离态 的严格定义是:含有足够数量的自由带电粒子, 有较大的电导率,其运动主要受电磁力支配的 物质状态.等离体由带正电的离子和带负电的 电子,也可能还有一些中性的原子和分子所组 成,粒子在两次碰撞之间在空间作长程运动,其 空间位置是完全无规的.
当压强超过1024巴,密度超过1011一1012 克/厘米3时,原子结构被破坏,原子外围的电子 壳层被挤压到原子核的范围,这种状态称为超 固态.超固态又可分为性质完全不同的中子 态和黑洞,在宇宙空间中已经观察到了这两种 物态的存在.
当核外电子被挤压进原子核内,与核内质 子结合成中子时,物质形成简并中子气状态,称 为中子态.脉冲星是一种发射出短周期电磁波 脉冲辐射的天体,宇宙间已经发现了几百颗脉 冲星,普遍认为它们是旋转着的中子星,中子星 的物态就是中子态.
一个原先质量为4—8个太阳质量的恒星, 在演化过程中当其内部燃料耗尽,核反应停止 后,会发生引力坍缩而形成简并中子气状态,这 种简并中子气的压强有可能与引力收缩作用达 到平衡,这时就形成中子星.在恒星坍缩形成 中子星的过程中要发生“爆发”.当它猛烈收缩 时,巨大的引力势能被释放出来,把恒星的外壳 掀掉,向星际空间抛射出大量物质,这就是所谓 的“超新星爆发”.爆发后剩余下来的核心部分 质量若大约为1.4—2个太阳质量,则形成中子 星;若坍缩中心核的质量超过太阳质量的2倍, 则可能变成黑洞.
黑洞的密度比中子星的密度大得多,在黑 洞内引力非常强,任何物质(包括光)都不能从 中逸出,而外界的物质却能被吸入其中.因此 无法观测到来自黑洞内部的辐射,但是黑洞与 外界仍有引力作用,可以通过引力场探测黑洞 的存在.
四、新的说法——物质有六态
当等离体被彻底电离时,核外电子完全被 剥离,形成原子核和电子的混合集团.这时如 果等离体的能量继续增加,就可能导致原子核 也分裂为(基本)粒子,形成另一种物态.物质 形成由粒子组成的粒子气状态,称为粒子态.
真空中的电磁波,亦即光子气,是自然界中 常见的一种物质,它的物态应该属于粒子态.除 此以外,在自然界中很难见到粒子态,但是在实 验室中有可能在小范围短暂的时间内制造出粒 子态.例如,将一团氢气中的氢分子完全离解和 电离,就形成了由质子和电子组成的粒子态.
粒子态往下一个层次的物态应该是粒子分解成夸克而形成夸克气的态,称为夸克态.由于在实验中尚未发现自由夸克,因此夸克态是否存在尚有待实验的证实.